We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A model in which a foraging animal can reproduce if its energy reserves reach a critical level is presented. The animal's reserves are modelled as a finite-state Markov chain. The animal has the choice between foraging options which may have the same mean net gain but differ in their variances. In addition to starvation, animals are subject to death because of predation, bad weather, and so on. We focus on the case where the rate of mortality due to these sources is the same under all options. We investigate policies that maximise the expected lifetime reproductive success. It is found that the optimal value function is concave at low reserves (low-variance action region) and convex at high reserves (high-variance action region). The value function under the low-variance action has also the same shape and the same inflexion point. This result allows us to compute optimal policies just by looking at the low-variance value function. The result is also used to show that increasing the mortality rate increases the high-variance region under the optimal policy. The pattern of risk-sensitive behaviour predicted by this model is in contrast to that predicted by a similar model in which no reproduction occurs and the optimality criterion is to minimise the probability of death (McNamara (1990)).
A risk-sensitive certainty equivalence principle is deduced, expressed in Theorem 1, for a model with linear dynamics and observation rules, Gaussian noise and an exponential-quadratic criterion of the form (2). The senses in which one is now to understand certainty equivalence and the separation principle are discussed.
The conventional linear/quadratic/Gaussian assumptions are modified in that minimisation of the expectation of cost G defined by (2) is replaced by minimisation of the criterion function (5). The scalar –θ is a measure of risk-aversion. It is shown that modified versions of certainty equivalence and the separation theorem still hold, that optimal control is still linear Markov, and state estimate generated by a version of the Kalman filter. There are also various new features, remarked upon in Sections 5 and 7. The paper generalises earlier work of Jacobson.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.