Researchers would often like to leverage data from a collection of sources (e.g., meta-analyses of randomized trials, multi-center trials, pooled analyses of observational cohorts) to estimate causal effects in a target population of interest. However, because different data sources typically represent different underlying populations, traditional meta-analytic methods may not produce causally interpretable estimates that apply to any reasonable target population. In this article, we present the CausalMetaR R package, which implements robust and efficient methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We briefly review the methods, describe the key features of the package, and demonstrate how to use the package through an example. The package aims to facilitate causal analyses in the context of meta-analysis.