We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we provide some bounds for the quantity $\Vert f(y)-f(x)\Vert$, where $f:D\rightarrow \mathbb{C}$ is an analytic function on the domain $D\subset \mathbb{C}$ and $x$, $y\in {\mathcal{B}}$, a Banach algebra, with the spectra $\unicode[STIX]{x1D70E}(x)$, $\unicode[STIX]{x1D70E}(y)\subset D$. Applications for the exponential and logarithmic functions on the Banach algebra ${\mathcal{B}}$ are also given.
We present refined and reversed inequalities for the weighted arithmetic mean–harmonic mean functional inequality. Our approach immediately yields the related operator versions in a simple and fast way. We also give some operator and functional inequalities for three or more arguments. As an application, we obtain a refined upper bound for the relative entropy involving functional arguments.
In this paper we establish operator quasilinearity properties of some functionals associated with Davis–Choi–Jensen’s inequality for positive maps and operator convex or concave functions. Applications for the power function and the logarithm are provided.
Let A, B be non-negative bounded self-adjoint operators, and let a be a real number such that 0 < a < 1. The Loewner–Heinz inequality means that A ≤ B implies that Aa ≦ Ba. We show that A ≤ B if and only if (A + λ)a ≦ (B + λ)a for every λ > 0. We then apply this to the geometric mean and spectral order.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.