We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper examines a systematic method of constructing a pair of (inter-related) root systems for arbitrary Coxeter groups from a class of nonstandard geometric representations. This method can be employed to construct generalizations of root systems for a large family of linear groups generated by involutions. We then give a characterization of Coxeter groups, among these groups, in terms of such paired root systems. Furthermore, we use this method to construct and study the paired root systems for reflection subgroups of Coxeter groups.
In this paper, we investigate the set of accumulation points of normalized roots of infinite Coxeter groups for certain class of their action. Concretely, we prove the conjecture proposed in [6, Section 3.2] in the case where the equipped Coxeter matrices are of type $(n-1,1)$, where $n$ is the rank. Moreover, we obtain that the set of such accumulation points coincides with the closure of the orbit of one point of normalized limit roots. In addition, in order to prove our main results, we also investigate some properties on fixed points of the action.
Let a prime $p$ divide the order of a finite real reflection group. We classify the reflection subgroups up to conjugacy that are minimal with respect to inclusion, subject to containing a $p$-Sylow subgroup. For Weyl groups, this is achieved by an algorithm inspired by the Borel–de Siebenthal algorithm. The cases where there is not a unique conjugacy class of reflection subgroups minimally containing the $p$-Sylow subgroups are the groups of type $F_{4}$ when $p=2$ and $I_{2}(m)$ when $m\geq 6$ is even but not a power of $2$ for each odd prime divisor $p$ of $m$. The classification significantly reduces the cases required to describe the $p$-Sylow subgroups of finite real reflection groups.
A compact set K ⊂ ℝn is Whitney 1-regular if the geodesic distance in K is equivalent to the Euclidean distance. Let P be the Chevalley map defined by an integrity basis of the algebra of polynomials invariant by a reflection group. This paper gives the Whitney 1-regularity of the image by P of any closed ball centred at the origin. The proof uses the works of Givental', Kostov and Arnol'd on the symmetric group. It needs a generalization of a property of the Vandermonde determinants to the Jacobian of the Chevalley mappings.
We define in an axiomatic fashion a Coxeter datum for an arbitrary Coxeter group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$. This Coxeter datum will specify a pair of reflection representations of $W$ in two vector spaces linked only by a bilinear pairing without any integrality or nondegeneracy requirements. These representations are not required to be embeddings of $W$ in the orthogonal group of any vector space, and they give rise to a pair of inter-related root systems generalizing the classical root systems of Coxeter groups. We obtain comparison results between these nonorthogonal root systems and the classical root systems. Further, we study the equivalent of the Tits cone in these nonorthogonal representations.
We apply the techniques of symmetric generation to establish the standard presentations of the finite simply laced irreducible finite Coxeter groups, that is, the Coxeter groups of types An, Dn and En, and show that these are naturally arrived at purely through consideration of certain natural actions of symmetric groups. We go on to use these techniques to provide explicit representations of these groups.
For each finite real reflection group W, we identify a copy of the type-W simplicial generalized associahedron inside the corresponding simplicial permutahedron. This defines a bijection between the facets of the generalized associahedron and the elements of the type-W non-crossing partition lattice that is more tractable than previous such bijections. We show that the simplicial fan determined by this associahedron coincides with the Cambrian fan for W.
The conjugacy classes of so-called special involutions parameterize the constituents of the action of a finite Coxeter group on the cohomology of the complement of its complexified hyperplane arrangement. In this note we give a short intrinsic characterisation of special involutions in terms of so-called bulky parabolic subgroups.
This paper has a twofold purpose. The first is to compute the Euler characteristics of hyperbolic Coxeter groups Ws of level 1 or 2 by a mixture of theoretical and computer aided methods. For groups of level 1 and odd values of |S|, the Euler characteristic is related to the volume of the fundamental region of Ws in hyperbolic space. Secondly we note two methods of imbedding such groups in each other. This reduces the amount of computation needed to determine the Euler characteristics and also reduces the number of essentially different hyperbolic groups that need to be considered.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.