We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Magnetic resonance imaging (MRI) is indispensable for treatment planning in prostate radiotherapy (PR). Registration of MRI when compared to planning CT (pCT) is prone to uncertainty and this is rarely reported. In this study, we have compared three different types of registration methods to justify the direct use of MRI in PR.
Methods and materials:
Thirty patients treated for PR were retrospectively selected for this study and all underwent both CT and MRI. The MR scans were registered to the pCT using markers, focused and unfocussed methods and their registration are REGM, REGF, and REGNF, respectively. Registration comparison is done using the translational differences of three axes from the centre-of-mass values of gross tumour volume (GTV) generated using MRI.
Results:
The average difference in all three axes (x, y, z) is (1, 2·5, 2·3 mm) and (1, 3, 2·3 mm) for REGF-REFNF and REGF-REGM, respectively. MR-based GTV Volume is less in comparison to CT-based GTV and it is significantly different (p < 0·001).
Findings:
Image registration uncertainty is unavoidable for a regular CT–MR workflow. Additional planning target volume margin ranging from 2 to 3mm could be avoided if MR-only workflow is employed. This reduction in the margin is beneficial for small tumours treated with hypofractionation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.