We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Superconductivity is a quantum state of matter that occurs through a phase transition driven by thermal fluctuations. In this state, materials show ideal electric conductivity and ideal diamagnetism to a very good approximation. Two main classes of superconductors, type I and type II, can be distinguished with regards to flux penetration under an applied magnetic field. The properties of these two types are first discussed in detail. Next, the Ginzburg–Landau theory is developed and it is shown that in the presence of a magnetic field, when the ratio of penetration and coherence lengths is smaller than 1⁄√2 the superconductor behaves as type I, while it behaves as type II when this ratio is larger than 1⁄√2. In this second case, the flux penetrates through vortices that form a hexagonal lattice. Finally, in the last part, the microscopic BCS theory is discussed in order to provide an understanding of the physical origin of superconductivity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.