We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In model-based economic evaluations, the effectiveness parameter is often informed by studies with a limited duration of follow-up, requiring extrapolation of the treatment effect over a longer time horizon. Extrapolation from short-term data alone may not adequately capture uncertainty in that extrapolation. This study aimed to use structured expert elicitation to quantify uncertainty associated with extrapolation of the treatment effect observed in a clinical trial.
Methods
A structured expert elicitation exercise was conducted for an applied study of a podiatry intervention designed to reduce the rate of falls and fractures in the elderly. A bespoke web application was used to elicit experts’ beliefs about two outcomes (rate of falls and odds of fracture) as probability distributions (priors), for two treatment options (intervention and treatment as usual) at multiple time points. These priors were used to derive the temporal change in the treatment effect of the intervention, to extrapolate outcomes observed in a trial. The results were compared with extrapolation without experts’ priors.
Results
The study recruited thirty-eight experts (geriatricians, general practitioners, physiotherapists, nurses, and academics) from England and Wales. The majority of experts (32/38) believed that the treatment effect would depreciate over time and expressed greater uncertainty than that extrapolated from a trial-based outcome alone. The between-expert variation in predicted outcomes was relatively small.
Conclusions
This study suggests that uncertainty in extrapolation can be informed using structured expert elicitation methods. Using structured elicitation to attach values to complex parameters requires key assumptions and simplifications to be considered.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.