We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC).
Method
We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network.
Results
The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level.
Conclusions
Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.