We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper concerns an insurance firm’s surplus process observed at renewal inspection times, with a focus on assessing the probability of the surplus level dropping below zero. For various types of inter-inspection time distributions, an explicit expression for the corresponding transform is given. In addition, Cramér–Lundberg-type asymptotics are established. Also, an importance sampling-based Monte Carlo algorithm is proposed, and is shown to be logarithmically efficient.
In this paper, we extend the optimal dividend and capital injection problem with affine penalty at ruin in (Xu, R. & Woo, J.K. (2020). Insurance: Mathematics and Economics 92: 1–16) to the case with singular dividend payments. The asymptotic relationships between our value function to the one with bounded dividend density are studied, which also help to verify that our value function is a viscosity solution to the associated Hamilton–Jacob–Bellman Quasi-Variational Inequality (HJBQVI). We also show that the value function is the smallest viscosity supersolution within certain functional class. A modified comparison principle is proved to guarantee the uniqueness of the value function as the viscosity solution within the same functional class. Finally, a band-type dividend and capital injection strategy is constructed based on four crucial sets; and the optimality of such band-type strategy is proved by using fixed point argument. Numerical examples of the optimal band-type strategies are provided at the end when the claim size follows exponential and gamma distribution, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.