We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mukai’s program in [16] seeks to recover a K3 surface X from any curve C on it by exhibiting it as a Fourier–Mukai partner to a Brill–Noether locus of vector bundles on the curve. In the case X has Picard number one and the curve $C\in |H|$ is primitive, this was confirmed by Feyzbakhsh in [11, 13] for $g\geq 11$ and $g\neq 12$. More recently, Feyzbakhsh has shown in [12] that certain moduli spaces of stable bundles on X are isomorphic to the Brill–Noether locus of curves in $|H|$ if g is sufficiently large. In this paper, we work with irreducible curves in a nonprimitive ample linear system $|mH|$ and prove that Mukai’s program is valid for any irreducible curve when $g\neq 2$, $mg\geq 11$ and $mg\neq 12$. Furthermore, we introduce the destabilising regions to improve Feyzbakhsh’s analysis in [12]. We show that there are hyper-Kähler varieties as Brill–Noether loci of curves in every dimension.
We show that the minimal model program on any smooth projective surface is realized as a variation of the moduli spaces of Bridgeland stable objects in the derived category of coherent sheaves.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.