We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We expand the theory of 2-classifiers, that are a 2-categorical generalization of subobject classifiers introduced by Weber. The idea is to upgrade monomorphisms to discrete opfibrations. We prove that the conditions of 2-classifier can be checked just on a dense generator. The study of what is classified by a 2-classifier is similarly reduced to a study over the objects that form a dense generator. We then apply our results to the cases of prestacks and stacks, where we can thus look just at the representables. We produce a 2-classifier in prestacks that classifies all discrete opfibrations with small fibres. Finally, we restrict such 2-classifier to a 2-classifier in stacks. This is the main ingredient of a proof that Grothendieck 2-topoi are elementary 2-topoi. Our results also solve a problem posed by Hofmann and Streicher when attempting to lift Grothendieck universes to sheaves.
Dirac rings are commutative algebras in the symmetric monoidal category of $\mathbb {Z}$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger $\infty $-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to $\operatorname {MU}$ and $\mathbb {F}_p$ in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.
We recall several categories of graphs which are useful for describing homotopy-coherent versions of generalised operads (e.g. cyclic operads, modular operads, properads, and so on), and give new, uniform definitions for their morphisms. This allows for straightforward comparisons, and we use this to show that certain free-forgetful adjunctions between categories of generalised operads can be realised at the level of presheaves. This includes adjunctions between operads and cyclic operads, between dioperads and augmented cyclic operads, and between wheeled properads and modular operads.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed.
This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author’s thesis.
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval
$[0,1]$
in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
We study two notions of purity in categories of sheaves: the categorical and the geometric. It is shown that pure injective envelopes exist in both cases under very general assumptions on the scheme. Finally, we introduce the class of locally absolutely pure (quasi-coherent) sheaves with respect to the geometrical purity, and characterize locally Noetherian closed subschemes of a projective scheme in terms of the new class.
The author has previously associated to each commutative ring with unit $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\Bbbk $ and étale groupoid $\mathscr{G}$ with locally compact, Hausdorff, totally disconnected unit space a $\Bbbk $-algebra $\Bbbk \, \mathscr{G}$. The algebra $\Bbbk \, \mathscr{G}$ need not be unital, but it always has local units. The class of groupoid algebras includes group algebras, inverse semigroup algebras and Leavitt path algebras. In this paper we show that the category of unitary$\Bbbk \, \mathscr{G}$-modules is equivalent to the category of sheaves of $\Bbbk $-modules over $\mathscr{G}$. As a consequence, we obtain a new proof of a recent result that Morita equivalent groupoids have Morita equivalent algebras.
Define a second order tree to be a map between trees (with fixed codomain). We show that many properties of ordinary trees have analogs for second order trees. In particular, we show that there is a notion of “definition by recursion on a well-founded second order tree” which generalizes “definition by transfinite recursion”. We then use this new notion of definition by recursion to prove an analog of Lusin’s Separation theorem for closure spaces of global sections of a second order tree.
Finitely accessible categories naturally arise in the context of the classical theory of purity. In this paper we generalise the notion of purity for a more general class and introduce techniques to study such classes in terms of indecomposable pure injectives related to a new notion of purity. We apply our results in the study of the class of flat quasi-coherent sheaves on an arbitrary scheme.
Two major results in the theory of ℓ-adic mixed constructible sheaves are the purity theorem (every simple perverse sheaf is pure) and the decomposition theorem (every pure object in the derived category is a direct sum of shifts of simple perverse sheaves). In this paper, we prove analogues of these results for coherent sheaves. Specifically, we work with staggered sheaves, which form the heart of a certain t-structure on the derived category of equivariant coherent sheaves. We prove, under some reasonable hypotheses, that every simple staggered sheaf is pure, and that every pure complex of coherent sheaves is a direct sum of shifts of simple staggered sheaves.
The purpose of this note is to show that the Betti realization of motives is compatible with Grothendieck's six operations and the nearby cycles functors, which in the motivic world, were previously studied by the author. We first review the construction of the Betti realization. Then, we establish some general criteria which, applied to the Betti realization, give the compatibilities we seek except for the one concerning the nearby cycles functors. The latter will be treated in a separate section.
This note shows that any set of cofibrations containing the standard set of generating projective cofibrations determines a cofibrantly generated proper closed model structure on the category of simplicial presheaves on a small Grothendieck site, for which the weak equivalences are the local weak equivalences in the usual sense.
Most extant localization theories for spaces, spectra and diagrams of such can be derived from a simple list of axioms which are verified in broad generality. Several new theories are introduced, including localizations for simplicial presheaves and presheaves of spectra at homology theories represented by presheaves of spectra, and a theory of localization along a geometric topos morphism. The $f$-localization concept has an analog for simplicial presheaves, and specializes to the ${{\mathbb{A}}^{1}}$-local theory of Morel-Voevodsky. This theory answers a question of Soulé concerning integral homology localizations for diagrams of spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.