Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-05-03T14:03:54.977Z Has data issue: false hasContentIssue false

Accelerator mass spectrometer facility for heritage radiocarbon dating at NRICH, Korea

Published online by Cambridge University Press:  21 October 2024

Min-Ji Kong
Affiliation:
Conservation Science Division, National Research Institute of Cultural Heritage, 132, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
Sujin Park*
Affiliation:
Conservation Science Division, National Research Institute of Cultural Heritage, 132, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
Youngeun Kim
Affiliation:
Conservation Science Division, National Research Institute of Cultural Heritage, 132, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
*
Corresponding author: Sujin Park; Email: [email protected]

Abstract

In 2021, the National Research Institute of Cultural Heritage (NRICH) installed a new accelerator mass spectrometer (AMS) to date Korean national heritage. Before conducting radiocarbon dating, the facility was set up and its performance was assessed. AMS system parameters have been optimized. Measurement of standard and blank samples was verified. Intercomparison analyses were also performed using heritage samples. The F14C value of NIST 4990C was 1.3406 and the background level was 0.0024. Both IAEA-C7 and C8 were confirmed to match the reference value within the 1-σ range. The NIST 4990C measurement results confirmed high precision and accuracy, with 1-σ values below 2‰. In the intercomparison, the error for each sample was 2‰. Thus, based on this study, NRICH plans to launch a dating service specializing in cultural heritage.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arnold, JR and Libby, WF (1951) Radiocarbon dates. Science 113(2927), 111120. doi: 10.1126/science.113.2927.111.CrossRefGoogle ScholarPubMed
Brock, F, Higham, T, Ditchfield, P and Bronk Ramsey, C (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103112. doi: https://doi.org/10.1017/S0033822200045069.CrossRefGoogle Scholar
Choy, K, Yun, HY, Lee, J, Fuller, BT and Shin, KH (2021) Direct isotopic evidence for human millet consumption in the Middle Mumun Period: Implication and importance of millets in early agriculture on the Korean Peninsula. Journal of Archaeological Science 129, 105372. doi: https://doi.org/10.1016/j.jas.2021.105372.CrossRefGoogle Scholar
Hajdas, I, Cristi, C, Bonani, G and Maurer, M (2014) Textiles and radiocarbon dating. Radiocarbon 56(2), 637643. doi: https://doi.org/10.2458/56.17757.CrossRefGoogle Scholar
Hellborg, R and Skog, G (2008) Accelerator mass spectrometry. Mass Spectrometry Reviews 27(5), 398427. doi: https://doi.org/10.1002/mas.20172.CrossRefGoogle ScholarPubMed
Hwang, J, Park, J, Kim, J and Oh, Y (2022) A review of the problems and alternatives of the use of radiocarbon dating in Korean archaeology. Hanguk Sanggosa Hakbo 116, 113159. doi: 10.18040/sgs.2022.116.113.Google Scholar
Hwang, JH (2021) Radiocarbon Dating in Korean Archaeology. Yongnam Archaeological Review Yongnam Kogohak 90, 530 (in Korean with English abstract).CrossRefGoogle Scholar
Jull, AT, Burr, GS and Molnár, M (2024) AMS radiocarbon dating. Reference Module in Earth Systems and Environmental Sciences. doi: 10.1016/B978-0-323-99931-1.00141-0.CrossRefGoogle Scholar
Kutschera, W, Bietak, M, Wild, EM, Bronk Ramsey, C, Dee, M, Golser, R, Kopetzky, K, Stadler, P, Steier, P, Thanheiser, U and Weninger, F (2012) The Chronology of Tell El-Daba: A crucial meeting point of 14C dating, archaeology, and egyptology in the 2nd millennium BC. Radiocarbon 54(3–4), 407422. doi: https://doi.org/10.1017/S0033822200047172.CrossRefGoogle Scholar
Kutschera, W (1993) Accelerator mass spectrometry: Counting atoms rather than decays. Nuclear Physics News 3(1), 1521. doi: https://doi.org/10.1080/10506899308201850.CrossRefGoogle Scholar
Kutschera, W, Jull, AJ, Paul, M and Wallner, A (2023) Atom counting with accelerator mass spectrometry. Reviews of Modern Physics 95(3), 035006. doi: https://doi.org/10.1103/RevModPhys.95.035006.CrossRefGoogle Scholar
Libby, WF, Anderson, EC and Arnold, JR (1949) Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109(2827), 227228. doi: https://www.science.org/doi/10.1126/science.109.2827.227.CrossRefGoogle ScholarPubMed
Müller, AM, Döbeli, M, Seiler, M and Synal, HA (2015) A simple Bragg detector design for AMS and IBA applications. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 356–357, 8187. doi: https://doi.org/10.1016/j.nimb.2015.04.056.CrossRefGoogle Scholar
Nakamura, T, Terada, T and Ueki, C (2019) Radiocarbon dating of textile components from historical silk costumes and other cloth products in the Ryukyu Islands, Japan. Radiocarbon 61(6), 16631674. doi: https://doi.org/10.1017/RDC.2019.105.CrossRefGoogle Scholar
Park, S and Kong, MJ (2022) Current status of the installation of an accelerator mass spectrometer for radiocarbon dating of the cultural heritage materials and its stabilization. Conservation Science Studies 43, 144155.CrossRefGoogle Scholar
Park, S, Kong, MJ and Kim, Y (2023) Establishment of a chemical pretreatment method for radiocarbon dating of wood at NRICH. Conservation Science Studies 44, 7587.Google Scholar
Piotrowska, N, Marzena, K, Boroń, P, Imiołczyk, E, Budziakowski, M, Poloczek, A, Poloczek-Imielińska, A and Jaksik, M (2023) Dating of wooden heritage objects in the Gliwice 14C and Mass Spectrometry Laboratory. Radiocarbon 1–13. doi: https://doi.org/10.1017/RDC.2023.91.CrossRefGoogle Scholar
Quiles, A, Sowada, K and Kanawati, N (2023) Dating the end of the Egyptian Old Kingdom: New contextualized dates from the reign of King Pepy II. Radiocarbon 65(5), 10501097. doi: https://doi.org/10.1017/RDC.2023.94.CrossRefGoogle Scholar
Reimer, P, Austin, WEN, Bard, E, Bayliss, A, Blackwill, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A and Talamo, S (2020) The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725757. doi: https://doi.org/10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rimkus, T, Eriksen, BV, Meadows, J and Hamann, C (2023) Bone points in time: Dating hunter-gatherer bone points in the territory of Lithuania. Radiocarbon 65(5), 11181138. doi: https://doi.org/10.1017/RDC.2023.97.CrossRefGoogle Scholar
Stenström, K, Leide-Svegborn, S, Erlandsson, B, Hellborg, R, Mattsson, S. Nilsson, LE, Nosslin, B, Skog, G and Wiebert, A (1996) Application of accelerator mass spectrometry (AMS) for high-sensitivity measurements of 14CO2 in long-term studies of fat metabolism. Applied Radiation and Isotopes 47(4), 417422. doi: https://doi.org/10.1016/0969-8043(96)82298-6.CrossRefGoogle ScholarPubMed
Stenström, K (1995) New applications of 14C measurements at the Lund AMS Facility. Lund University (Sweden). Dept. of Nuclear Physics.Google Scholar
Stuiver, M and Polach, HA (1977) Discussion reporting of 14C dating. Radiocarbon 19(3), 355363. doi: https://doi.org/10.1017/S0033822200003672.CrossRefGoogle Scholar
Synal, HA, Stocker, M and Suter, M (2007) MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1), 713. doi: https://doi.org/10.1016/j.nimb.2007.01.138.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, HA and Vockenhuber, C (2010a) MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52(2), 252262. doi: https://doi.org/10.1017/S0033822200045288.CrossRefGoogle Scholar
Wacker, L, Christl, M and Synal, HA (2010b) BATS: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7–8), 976979. doi: https://doi.org/10.1016/j.nimb.2009.10.078.CrossRefGoogle Scholar
Wacker, L, Němec, M and Bourquin, J (2010c) A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 268(7–8), 931934. doi: https://doi.org/10.1016/j.nimb.2009.10.067.CrossRefGoogle Scholar
White, JA, Schulting, R, Lythe, A, Hommel, P, Ramsey, CB, Moiseyev, V, Khartanovich, V and Weber, AW (2020) Integrated stable isotopic and radiocarbon analyses of Neolithic and Bronze. Journal of Archaeological Science 119, 105161. doi: https://doi.org/10.1016/j.jas.2020.105161.CrossRefGoogle Scholar