Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-05-02T10:44:09.196Z Has data issue: false hasContentIssue false

Effect of dehydroleucodine (DhL) on the acrosome reaction in sperm of Chinchilla lanigera: signalling pathways involved

Published online by Cambridge University Press:  19 November 2024

Maria Fernanda Medina
Affiliation:
Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
Ana Pucci
Affiliation:
Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
Franco José Pucci
Affiliation:
Miguel Lillo Foundation, Animal Morphology Institute (AMI), San Miguel de Tucumán, Tucumán, Argentina
Marta Ines Bühler
Affiliation:
Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
María Cecilia Gramajo-Bühler*
Affiliation:
Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina Department of Developmental Biology, Higher Institute for Biological Research, CONICET, San Miguel de Tucumán, Tucumán, Argentina
*
Corresponding author: María Cecilia Gramajo-Bühler; Email: [email protected]

Abstract

The secondary metabolites of several plant species, particularly sesquiterpenic lactones (SLs) have been studied by different research groups for over 30 years. This group of metabolites presents numerous biological activities such as antibacterial, antiviral, antiulcer, cell proliferation inhibitor, and oocyte activator with participation in exocytosis processes. This study aims to assess some sperm parameters in epididymal gametes of Chichilla lanigera exposed to increasing concentrations (0 to 2 mM) of DhL for various incubation times from 10 to 40 minutes. We determined the participation of different cell signalling pathways in the induced acrosome reaction. Our results showed an alteration in the progressive motility pattern and cell viability depending on DhL concentration and exposure time of gametes. When analyzing acrosomal status, higher percentages than the negative control were obtained in all tested doses. Both isolated and joint inhibition tests of PKA and phospholipases (PLC and PLA2) showed a greater participation of PI-PLC. This is the first report concerning the effects of this lactone on the medium of sperm incubation. Consequently, further studies will be necessary to determine the molecular implications of this lactone on the fertilizing potential of the sperm.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abood, S., Veisaga, M.L., López, L.A. and Barbieri, M.A. (2018) Dehydroleucodine inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. Phytotherapy Research: PTR, 32(8), 15831592. https://doi.org/10.1002/ptr.6089 CrossRefGoogle ScholarPubMed
Cruzado, M., Castro, C., Fernandez, D., Gomez, L., Roque, M. and Giordano, O.E. (2005) Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase. Cellular and Molecular Biology (Noisy-legrand) 51, 525–30.Google ScholarPubMed
Giordano, O.S., Guerreiro, E., Pestchanker, M.J., Guzman, J., Pastor, D. and Guardia, T. (1990) The gastric cytoprotective effect of several sesquiterpene lactones. Journal of Natural Products 53(4), 803809.CrossRefGoogle ScholarPubMed
Gramajo-Bühler, M.C., Zelarayán, L. and Sánchez-Toranzo, G. (2016) Involvement of protein cAMP-dependent Kinase, Phospholipase A2 and Phospholipase C in sperm acrosome reaction of Chinchilla lanigera . Reproduction in Domestic Animals = Zuchthygiene 51(1), 150157. https://doi.org/10.1111/rda.12659 CrossRefGoogle ScholarPubMed
Guardia, T., Guzman, J.A., Pestchanker, M.J., Guerreiro, E. and Giordano, O.S. (1994) Mucus synthesis and sulfhydryl groups in cytoprotection mediated by dehydroleucodine, a sesquiterpene lactone. Journal of Natural Products 57(4), 507509.CrossRefGoogle ScholarPubMed
Hehner, S.P., Heinrich, M., Bork, P.M., Vogt, M., Ratter, F., Lehmann, V., Schulze-Osthoff, K., Dröge, W. and Schmitz, M.L. (1998) Sesquiterpene lactones specifically inhibit activation of NF-kappa B by preventing the degradation of I kappa B-alpha and I kappa B-beta. The Journal of Biological Chemistry 273(3), 12881297. https://doi.org/10.1074/jbc.273.3.1288 CrossRefGoogle ScholarPubMed
Heinrich, M., Robles, M., West, J.E., Ortiz de Montellano, B.R. and Rodriguez, E. (1998) Ethnopharmacology of Mexican asteraceae (Compositae). Annual Review of Pharmacology and Toxicology 38, 539565.CrossRefGoogle ScholarPubMed
Lee, B.K., Park, S.J., Nam, S.Y., Kang, S., Hwang, J., Lee, S.J. and Im, D.S. (2018) Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. Journal of Ethnopharmacology 213, 256261. https://doi.org/10.1016/j.jep.2017.11.018 CrossRefGoogle ScholarPubMed
Lee, K.H., Huang, E.S., Piantadosi, C., Pagano, J.S., Geissman, T.A. (1971) Cytotoxicity of sesquiterpene lactones. Cancer Research 31(11), 16491654.Google ScholarPubMed
Li, H., Zhou, C., Zhou, L., Chen, Z., Yang, L., Bai, H., Wu, X., Peng, H. and Zhao, Y. (2005) In vitro antiviral activity of three enantiomeric sesquiterpene lactones from Senecio species against hepatitis B virus. Antiviral Chemistry & Chemotherapy 16(4), 277282. https://doi.org/10.1177/095632020501600407 CrossRefGoogle ScholarPubMed
Lopez, M.E., Giordano, O.S. and Lopez, L.A. (2002) Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219, 82–8.Google ScholarPubMed
Medina, M.F., Bühler, M.I. and Sánchez-Toranzo, G. (2014) Chemical activation in Rhinella arenarum oocytes: effect of dehydroleucodine (DhL) and its hydrogenated derivative (2H-DhL). Zygote. doi: 10.1017/SO967199414000641 CrossRefGoogle Scholar
Mohamed, T.A., Hegazy, M.F., Abd El Aty, A.A., Ghabbour, H.A., Alsaid, M.S., Shahat, A.A. and Paré, P.W. (2017) Antimicrobial sesquiterpene lactones from Artemisia sieberi. Journal of Asian Natural Products Research 19(11), 10931101. https://doi.org/10.1080/10286020.2017.1302939 CrossRefGoogle ScholarPubMed
Moreno, L.E., Juárez, A.O. and Pelzer, L.E. (2012) Lethal effect of dehydroleucodine (DhL) on amphibian Bufo arenarum embryos. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50(3-4), 672674. https://doi.org/10.1016/j.fct.2011.12.037 CrossRefGoogle ScholarPubMed
Ozçelik, B., Gürbüz, I., Karaoglu, T. and Yeşilada, E. (2009) Actividades antivirales y antimicrobianas de tres lactonas sesquiterpénicas de Centaurea solstitialis L. ssp. solstitialis. Investigación Microbiológica 164(5), 545552. https://doi.org/10.1016/j.micres.2007.05.006 Google Scholar
Penissi, A.B., Fogal, T.H., Guzman, J.A. and Piezzi, R.S. (1998) Gastroduodenal mucosal protection induced by dehydroleucodine: mucus secretion and role ofmonoamines. Digestive Diseases and Sciences 43, 791–8.CrossRefGoogle Scholar
Polo, L.M., Castro, C.M., Cruzado, M.C., Collino, C.J., Cuello-Carrión, F.D., Ciocca, D.R., Giordano, O.S., Ferrari, M. and López, L.A. (2007) 11,13-dihydro-dehydroleucodine, a derivative of dehydroleucodine with an inactivated alkylating function conserves the anti-proliferative activity in G2 but does not cause cytotoxicity. European Journal of Pharmacology, 556 (1-3), 1926. https://doi.org/10.1016/j.ejphar.2006.10.049 CrossRefGoogle Scholar
Priestap, H.A., Abboud, K.A., Velandia, A.E., Lopez, L.A. and Barbieri, M.A. (2011) Dehydro-leucodin: a guaiane-type sesquiterpene lactone. Acta Crystallographica. Section E, Structure Reports Online 67(Pt 12), o3470. https://doi.org/10.1107/S1600536811048938 CrossRefGoogle ScholarPubMed
Rodríguez-Expósito, R.L., Nocchi, N., Reyes-Batlle, M., Sifaoui, I., Suárez-Gómez, B., Díaz-Marrero, A.R., Souto, M.L., Piñero, J.E., Fernández, J.J. and Lorenzo-Morales, J. (2021) Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorganic Chemistry 108, 104682. https://doi.org/10.1016/j.bioorg.2021.104682 CrossRefGoogle ScholarPubMed
Sánchez Toranzo, G., Giordano, O.S., López, L.A. and Bühler, M.I. (2007) Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes. Zygote (Cambridge, England) 15(2), 183187. https://doi.org/10.1017/S0967199407004212 CrossRefGoogle ScholarPubMed
Sanchez Toranzo, G., Lopez, L.A., Zapata Martinez, J., Gramajo Buhler, M.C. and Buhler, M.I. (2009) Involvement of the dehydroleucodine alpha-methylene-gamma lactone function in GVBD inhibition in Bufo arenarum oocytes. Zygote (Cambridge, England) 18(1), 4149. https://doi.org/10.1017/S0967199409990086 CrossRefGoogle ScholarPubMed
Siriwan, D., Miyawaki, C., Miyamoto, T., Naruse, T., Okazaki, K. and Tamura, H. (2011) Chemopreventive activity of sesquiterpene lactones (SLs) from yacon against TPA-induced Raji cells deformation. Pakistan Journal of Biological Sciences: PJBS 14(10), 605609. https://doi.org/10.3923/pjbs.2011.605.609 CrossRefGoogle ScholarPubMed
Suhaiman, L., Carlos de-Rosas, J., Sartor, T., Palmada, N., Giordano, O.S. and Lopez, L.A. (2011) Effect of dehydroleucodine on the reproductive tract of male mice. Andrologia 43, 297302. doi: 10.1111/j.1439-0272.2010.01053.x CrossRefGoogle ScholarPubMed
Vega, A.E., Wendel, G.H., Maria, A.O.M. and Pelzer, L. (2009) Antimicrobial activity of Artemisia douglasiana and dehydroleucodine against Helicobacter pylori. Journal of Ethnopharmacology 124(3), 653655.CrossRefGoogle ScholarPubMed
Vichera, G., Alfonso, J., Duque, C.C., Silvestre, M.A., Pereyra Bonnet, F., Fernández-Martín, R. and Salamone, D. (2010) Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reproduction in Domestic Animals 45, e30612.CrossRefGoogle ScholarPubMed
Zapata-Martínez, J., Medina, M.F., Gramajo-Bühler, M.C. and Sánchez-Toranzo, G. (2016) Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes. Zygote (Cambridge, England) 24(4), 495501. https://doi.org/10.1017/S096719941500043X CrossRefGoogle ScholarPubMed