Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-29T10:09:22.707Z Has data issue: false hasContentIssue false

Comparative analysis of calcium-sensing receptor (CaSR) expression and function in normal and abnormal human sperm and spermatogenic cells

Published online by Cambridge University Press:  18 September 2024

Zhengli Qian
Affiliation:
Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
Keyan Luo
Affiliation:
Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
Mingzhe Zhang
Affiliation:
Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
Guanping Yao*
Affiliation:
Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
*
Corresponding author: Guanping Yao; Email: [email protected]

Summary

The calcium-sensing receptor (CaSR) is a critical mediator of calcium homeostasis in various tissues. Its role in human reproduction, especially in sperm function and male fertility, remains not fully elucidated. This study investigates the expression patterns of CaSR in normal and abnormal sperm and spermatogenic cells and evaluates its potential effect on sperm motility and morphology. Using immunohistochemistry (IHC), quantitative PCR (qPCR), we assessed the expression levels of CaSR in normal sperm, spermatogonia, and cases of asthenozoospermia, oligozoospermia, and teratozoospermia. In vitro functional assays were performed to analyze the effects of CaSR modulation on sperm motility under varying conditions, including the presence of specific CaSR agonists and antagonists. Our study revealed distinct patterns of CaSR expression in normal sperm and spermatogonia compared with those in abnormal sperm samples, particularly in cases of asthenozoospermia, oligozoospermia, and teratozoospermia. A marked decrease in CaSR expression was evident in these abnormal samples, highlighting its significance in normal sperm functionality. Functional assays further elucidated the role of CaSR in sperm motility. Activation of CaSR through specific agonists enhanced sperm motility, while inhibition by antagonists led to reduced motility. Our findings suggest that CaSR plays a significant role in maintaining sperm functionality and that changes in its expression may be associated with male infertility. These insights into the molecular underpinnings of sperm physiology highlight CaSR as a potential therapeutic target for treating certain forms of male infertility.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Boisen, I. M., Rehfeld, A., Mos, I., Poulsen, N. N., Nielsen, J. E., Schwarz, P., Rejnmark, L., Dissing, S., Bach-Mortensen, P., Juul, A., Bräuner-Osborne, H., Lanske, B. and Blomberg Jensen, M. (2021). The calcium-sensing receptor is essential for calcium and bicarbonate sensitivity in human spermatozoa. The Journal of Clinical Endocrinology and Metabolism, 106(4), e1775e1792. doi: 10.1210/clinem/dgaa937 CrossRefGoogle Scholar
Conigrave, A. D. (2016). The calcium-sensing receptor and the parathyroid: Past, present, future. Frontiers in Physiology, 7, 563. doi: 10.3389/fphys.2016.00563 CrossRefGoogle Scholar
Correia, J., Michelangeli, F. and Publicover, S. (2015). Regulation and roles of Ca2+ stores in human sperm. Reproduction, 150(2), R65R76. doi: 10.1530/REP-15-0102 CrossRefGoogle Scholar
da Silva Lopes, K. and Abe, S. K. (2021). Polymorphisms contributing to calcium status: A systematic review. Nutrients, 13(8), 2488. doi: 10.3390/nu13082488 CrossRefGoogle Scholar
Du, C.-Q., Zhang, D.-X., Chen, J., He, Q.-F. and Lin, W.-Q. (2022). Men’s sleep quality and assisted reproductive technology outcomes in couples referred to a fertility clinic: A Chinese cohort study. Nature and Science of Sleep, 14, 557566. doi: 10.2147/NSS.S353131 CrossRefGoogle Scholar
Elajnaf, T., Iamartino, L., Mesteri, I., Müller, C., Bassetto, M., Manhardt, T., Baumgartner-Parzer, S., Kallay, E. and Schepelmann, M. (2019). Nutritional and pharmacological targeting of the calcium-sensing receptor influences chemically induced colitis in mice. Nutrients, 11(12), 3072. doi: 10.3390/nu11123072 CrossRefGoogle ScholarPubMed
Lee, J. H., Gomora, J. C., Cribbs, L. L. and Perez-Reyes, E. (1999). Nickel block of three cloned T-type calcium channels: Low concentrations selectively block alpha1H. Biophysical Journal, 77(6), 30343042. doi: 10.1016/S0006-3495(99)77134-1 CrossRefGoogle Scholar
Li, X., Luo, T., Li, H. and Yan, N. (2020). Sphingomyelin synthase 2 participate in the regulation of sperm motility and apoptosis. Molecules, 25(18), 4231. doi: 10.3390/molecules25184231 CrossRefGoogle Scholar
Liu, Z., Wang, B., He, R., Zhao, Y. and Miao, L. (2014). Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans . Biochimica et Biophysica Acta, 1843(2), 299308. doi: 10.1016/j.bbamcr.2013.11.001 CrossRefGoogle Scholar
Lu, H., Xu, D., Wang, P., Sun, W., Xue, X., Hu, Y., Xie, C. and Ma, Y. (2020). RNA-sequencing and bioinformatics analysis of long noncoding RNAs and mRNAs in the asthenozoospermia. Bioscience Reports, 40(7). doi: 10.1042/BSR20194041 CrossRefGoogle Scholar
Lv, M., Tang, D., Yu, H., Geng, H., Zhou, Y., Shao, Z., Li, K., Gao, Y., Guo, S., Xu, C., Tan, Q., Liu, C., Guo, R., Wu, H., Duan, Z., Zhang, J., Wang, G., Hua, R., Fu, F., et al. (2023). Novel FSIP2 variants induce super-length mitochondrial sheath and asthenoteratozoospermia in humans. International Journal of Biological Sciences, 19(2), 393411. doi: 10.7150/ijbs.76051 CrossRefGoogle Scholar
Navarrete, F. A., Alvau, A., Lee, H. C., Levin, L. R., Buck, J., Leon, P. M.-D., Santi, C. M., Krapf, D., Mager, J., Fissore, R. A., Salicioni, A. M., Darszon, A. and Visconti, P. E. (2016). Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models. Scientific Reports, 6, 33589. doi: 10.1038/srep33589 CrossRefGoogle Scholar
Thakker, R. V. (2012). Calcium-sensing receptor: Role in health and disease. Indian Journal of Endocrinology and Metabolism, 16, Suppl. 2, S213S216. doi: 10.4103/2230-8210.104041 CrossRefGoogle Scholar
Tredway, T. L., Guo, J. Z. and Chiappinelli, V. A. (1999). N-type voltage-dependent calcium channels mediate the nicotinic enhancement of GABA release in chick brain. Journal of Neurophysiology, 81(2), 447454. doi: 10.1152/jn.1999.81.2.447 CrossRefGoogle Scholar
Wakai, T., Vanderheyden, V. and Fissore, R. A. (2011). Ca2+ signaling during mammalian fertilization: Requirements, players, and adaptations. Cold Spring Harbor Perspectives in Biology, 3(4). doi: 10.1101/cshperspect.a006767 CrossRefGoogle Scholar
Yamada, T., Tatsumi, N., Anraku, A., Suzuki, H., Kamejima, S., Uchiyama, T., Ohkido, I., Yokoo, T. and Okabe, M. (2019). Gcm2 regulates the maintenance of parathyroid cells in adult mice. PLOS ONE, 14(1), e0210662. doi: 10.1371/journal.pone.0210662 CrossRefGoogle ScholarPubMed