Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-29T19:43:59.808Z Has data issue: false hasContentIssue false

Poincaré and counter-modernism

Published online by Cambridge University Press:  23 December 2024

Jeremy Gray*
Affiliation:
Open University, UK

Argument

It would have been easy for a less imaginative historian of mathematics than Herbert Mehrtens to have portrayed the work of Hilbert, Hausdorff, and other modernists as pioneers, and those who did not subscribe to their program as people who failed, were not good enough to make the turn, and were eventually and convincingly left behind. That he did not do so is not only because this would have been a shallow, selective view of the facts: it is incompatible with his Foucauldian approach to the relations between knowledge and power. Instead, he defined what I see as the most intriguing category of actor in his Moderne—Sprache—Mathematik (1990), the Gegenmoderner, or counter-moderns. The three men who characterize this position are Felix Klein, Henri Poincaré, and Luitzen Brouwer, and each merits a section in the book.

Of the three, Poincaré is the hardest to contain within that category. The range of his work, the nature of his influence, and the shifting standards by which mathematical significance has been evaluated by mathematicians, historians of mathematics, and society at large, all contribute to the problem. After thirty years, the methodological presumptions and aspirations of historians of mathematics have also changed, and I shall suggest that one way to appreciate the richness of Mehrtens’ book, to gain insight into what is meant by mathematical modernism, and to acknowledge a generation of work by other historians since 1990, is to re-examine aspects of Poincaré’s life and work and scholarship about him. Prodded by remarks by Leo Corry, Moritz Epple, and David Rowe, I shall suggest that the simple but useful dichotomy modern/counter-modern must be seen as a way into a more complicated situation, one in which different aspects of mathematics, specifically applied mathematics and the relationship of mathematics to contemporary physics, require fresh accounts of the role of modern mathematics in society.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barrow-Green, June E. 1997. Poincaré and the Three-body Problem. Providence, Rhode Island: American and London Mathematical Societies, HMath 11.Google Scholar
Birkhoff, George D. 1913. “Proof of Poincaré’s Geometric Theorem.” Transactions of the AMS 14: 1422.Google Scholar
Carathéodory, Constantin. 1909. “Untersuchungen über die Grundlagen der Thermodynamik.” Mathematische Annalen 67: 355386.CrossRefGoogle Scholar
Corry, Leo. 2004. David Hilbert and the Axiomatization of Physics (1898–1918): From Grundlagen der Geometrie to Grundlagen der Physik. Amsterdam: Kluwer.CrossRefGoogle Scholar
Corry, Leo. 2007. “From Algebra (1895) to Moderne Algebra (1930): Changing Conceptions of a Discipline. A Guided Tour using Jahrbuch über die Fortschritte der Mathematik.” In Episodes in History of Modern Algebra. Edited by Jeremy J. Gray and Karen H. Parshall, 221—244. Providence, Rhode Island: American and London Mathematical Societies, HMath 32.Google Scholar
Dieudonné, Jean. 1960. Foundations of Modern Analysis, vol. 1. New York: Academic Press.Google Scholar
Dieudonné, Jean. 1981. History of Functional Analysis. Amsterdam: North-Holland.Google Scholar
Dirac, Paul A.M. 1930. The Principles of Quantum Mechanics, Oxford: Oxford University Press.Google Scholar
Du Bois-Reymond, Paul. 1889. “Ueber lineare Differentialgleichungen zweiter Ordnung.” Journal für die reine und angewandte Mathematik 104: 241–301.CrossRefGoogle Scholar
Fréchet, Maurice. 1906. “Sur quelques points du calcul fonctionel.” Rendiconti di circolo matematico di Palermo 22: 174.CrossRefGoogle Scholar
Fredholm, Ivar. 1903. “Sur une classe d’équations fonctionnelles.” Acta Mathematica 27: 365390.CrossRefGoogle Scholar
Gray, Jeremy J. 2008. Plato’s Ghost: The Modernist Transformation of Mathematics. Princeton: Princeton University Press.CrossRefGoogle Scholar
Gray, Jeremy J. 2012. Henri Poincaré: A Scientific Biography. Princeton: Princeton University Press.CrossRefGoogle Scholar
Hadamard, Jacques. 1897. “Sur certaines propriétés des trajectoires en dynamique.” Journal de Mathématiques 5 (4): 331387.Google Scholar
Hadamard, Jacques. 1898. “Les surfaces à courbures opposées et leurs lignes géodésiques.” Journal de Mathématiques 5 (4): 2773.Google Scholar
Hadamard, J. 1923. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale University Press. repr. Dover 1952.Google Scholar
Harris, M. 2015. Mathematics without Apologies: Portrait of a Problematic Vocation. Princeton: Princeton University Press.Google Scholar
Hilbert, D. 1976 [1901]. “Mathematical Problems.” Mathematical Developments Arising from Hilbert Problems. Providence, Rhode Island: American Mathematical Society: 134.Google Scholar
Kosmann-Schwarzbach, Yvette. [2004] 2010. The Noether Theorems. Translated by Schwarzbach, Bertram. Heidelberg: Springer.Google Scholar
Lalli, Robert, Howey, Riaz, and Wintergrün, Dirk. 2020. “The Socio-Epistemic Networks of General Relativity, 1925–1970.” In The Renaissance of General Relativity in Context. Edited by Alexander S. Blum, Roberto Lalli, and Jürgen Renn, 15–84. Einstein Studies 16: Basel and Boston: Birkhäuser.CrossRefGoogle Scholar
Mancosu, Paolo. (ed.) 2008. The Philosophy of Mathematical Practice. Oxford: Oxford University Press.CrossRefGoogle Scholar
Mehrtens, Herbert. 1990. Moderne—Sprache—Mathematik: eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt: Suhrkamp.Google Scholar
Mehrtens, Herbert, Bos, Henk J.M., and Schneider, Ivo (eds.) 1981. Social History of Nineteenth-Century Mathematics. Boston & Basel: Birkhäuser.CrossRefGoogle Scholar
Paseau, Alexander C. (forthcoming) What is Mathematics About? Oxford: Oxford University Press.Google Scholar
Picard, Émile. 1890. “Mémoire sur la théorie des équations aux derivées partielles et la méthode des approximations successives.” Journal de Mathématiques 6: 145210.Google Scholar
Picard, Émile. 1893. “Sur l’équation aux dérivées partielles qui se présente dans la théorie de la vibration des membranes.” Comptes Rendus 107: 502507.Google Scholar
Poincaré, Henri. 1890. “Sur les équations aux dérivées partielles de la physique mathématique.” American Journal of Mathematics 12: 211294.CrossRefGoogle Scholar
Poincaré, Henri. 1892, 1893, 1899. Les Méthodes Nouvelles de la Mécanique Céleste, 3 vols. Paris: Gauthier-Villars.Google Scholar
Poincaré, Henri. 1905. “L’Analyse et la Physique.” In La valeur de la science: 136155. Paris: Flammarion.Google Scholar
Remmert, Volker R. 1999. “Mathematicians at War: Power Struggles in Nazi Germany’s Mathematical Community, Gustav Doetsch and Wilhelm Süss.” Revue d’Histoire de Mathématique 5 (1): 759.Google Scholar
Remmert, Volker R. 2004. “Die Deutsche Mathematiker-Vereinigung im ‘Dritten Reich’: Fach- und Parteipolitik.” Mitteilung der Deutschen Mathematiker-Vereinigung. 12 (4): 223245.CrossRefGoogle Scholar
Schwarz, Hermann A. 1870. “Ueber einen Grenzübergang durch alternirendes Verfahren.” Gesammelte Mathematische Abhandlungen: Berlin: Springer. Repr. New York: Chelsea, 1972 vol. 2: 133–143.Google Scholar
Schneider, Martina R. 2011. Zwischen zwei Disziplinen: B. L. van der Waerden und die Entwicklung der Quantenmechanik, Heidelberg: Springer.CrossRefGoogle Scholar
Stephenson, Craig. 2021. Periodic Orbits: F. R. Moulton’s Quest for a New Lunar Theory. Providence, Rhode Island: American Mathematical Societies, HMath 45.Google Scholar
Van Dalen, Dirk. 2013. L.E.J. Brouwer: Topologist, Intuitionist, Philosopher. Heidelberg: Springer.CrossRefGoogle Scholar
Van der Waerden, Bartel L. 1930–1931. Moderne Algebra. Berlin: Springer.Google Scholar
Weyl, Hermann. 1917. Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.Google Scholar
Weyl, Hermann. 1918. Das Kontinuum; Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Viet & Co.CrossRefGoogle Scholar
Zuboff, Shoshana. 2019. The Age of Surveillance Capitalism. New York: Public Affairs.Google Scholar