Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-28T21:45:57.050Z Has data issue: false hasContentIssue false

Brouwer and Hausdorff: On reassessing the foundations crisis

Published online by Cambridge University Press:  19 September 2024

David E. Rowe*
Affiliation:
Mainz University

Abstract

Epistemological issues associated with Cantorian set theory were at the center of the foundational debates from 1900 onward. Hermann Weyl, as a central actor, saw this as a smoldering crisis that burst into flames after World War I. The historian Herbert Mehrtens argued that this “foundations crisis” was part of a larger conflict that pitted moderns, led by David Hilbert, against various counter-moderns, who opposed the promotion of set theory and trends toward abstract theories. Among counter-moderns, L.E.J. Brouwer went a step further by proposing new foundational principles based on his philosophy of intuitionism. Meanwhile, Felix Hausdorff emerged as a leading proponent of the new modern style. In this essay, I offer a reassessment of the foundations crisis that stresses the marginal importance of the various intellectual issues involved. Instead, I offer an interpretation that focuses on tensions within the German mathematical community that led to a dramatic power struggle for control of the journal Mathematische Annalen.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernays, Paul. [1922] 1998. “On Hilbert’s Thoughts Concerning the Grounding of Arithmetic.” In: From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited and translated by Mancosu, Paolo, 215222. Oxford: Oxford University Press.Google Scholar
Biermann, Kurt R. 1988. Die Mathematik und ihre Dozenten an der Berliner Universität 1810-1933 – Stationen auf dem Wege eines mathematischen Zentrums von Weltgeltung. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
Brieskorn, Egbert and Purkert, Walter. 2018. Felix Hausdorff – Biographie, Gesammelte Werke. Band IB. Heidelberg: Springer.Google Scholar
Brieskorn, Egbert and Purkert, Walter. 2021. Felix Hausdorff – Mathematiker, Philosoph und Literat. Heidelberg: Springer.CrossRefGoogle Scholar
Brieskorn, Egbert and Purkert, Walter. 2024. Felix Hausdorff – Mathematician, Philosopher, Man of Letters. Translated by David, E. Rowe. Basel: Birkhäuser.CrossRefGoogle Scholar
Brouwer, L.E.J. 1913. “Intuitionism and Formalism.” Translated by Arnold Dresden. Bulletin of the American Mathematical Society 20 (2): 81–96.CrossRefGoogle Scholar
Brouwer, L.E.J. 1914. „Rezension von Entwickelung der Mengenlehre und ihrer Anwendungen.Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (2): 7883.Google Scholar
Brouwer, L.E.J. [1919] 1998. “Intuitionist Set Theory.” In From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paolo and translated by van Stigt, Walter P., 2327. Oxford: Oxford University Press.Google Scholar
Brouwer, L.E.J. [1921] 1998. “Does Every Real Number have a Decimal Expansion?” In From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paolo and translated by van Stigt, Walter P., 2835. Oxford: Oxford University Press.Google Scholar
Brouwer, L.E.J. [1928] 1998. “Intuitionist Reflections on Formalism.” In From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paolo and translated by van Stigt, Walter P., 4044. Oxford: Oxford University Press.Google Scholar
Brouwer, L.E.J. 2011. The Selected Correspondence of L.E.J. Brouwer. Edited by van Dalen, Dirk. London: Springer.Google Scholar
Chemla, Karine, José Ferreirós, Lizhen Ji, Scholz, Erhard, and Wang, Chang, eds. 2023. The Richness of the History and Philosophy of Mathematics. A Tribute to Jeremy Gray. Heidelberg: Springer.Google Scholar
Corry, Leo. 2004. Hilbert and the Axiomatization of Physics (1898–1918): From “Grundlagen der Geometrie” to “Grundlagen der Physik.” Archimedes: New Studies in the History and Philosophy of Science and Technology. Dordrecht: Kluwer Academic.Google Scholar
Corry, Leo. 2023. “How Useful Is the Term ‘Modernism’ for Understanding the History of Early Twentieth-Century Mathematics?” In The Richness of the History and Philosophy of Mathematics. A Tribute to Jeremy Gray. Edited by Chemla, Karine, Ferreirós, José, Ji, Lizhen, Scholz, Erhard, and Wang, Chang, 393423. Heidelberg: Springer.Google Scholar
Dreben, Burton and Kanamori, Akihiro. 1997. “Hilbert and Set Theory.” Synthese 110 (1):77125.CrossRefGoogle Scholar
Ferreirós, José. 2007. Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics, 2 nd ed. Basel: Birkhäuser.Google Scholar
Ferreirós, José. 2023. “On Set Theories and Modernism.” In The Richness of the History and Philosophy of Mathematics. A Tribute to Jeremy Gray. Edited by Chemla, Karine, Ferreirós, José, Ji, Lizhen, Scholz, Erhard, and Wang, Chang, 453478. Heidelberg: Springer.Google Scholar
Fraenkel, Adolf. 1923. Einleitung in die Mengenlehre, Zweite Auflage. Berlin: Springer.CrossRefGoogle Scholar
Freudenthal, Hans, ed. 1976. L.E.J. Brouwer Collected Works, Volume 2: Geometry, Analysis, Topology, and Mechanics. Amsterdam: North-Holland.Google Scholar
Gray, Jeremy. 2008. Plato’s Ghost: The Modernist Transformation of Mathematics. Princeton: Princeton University Press.CrossRefGoogle Scholar
Hausdorff, Felix. 1908. “ Grundzüge einer Theorie der geordneten Mengen.Mathematische Annalen 65: 435505.CrossRefGoogle Scholar
Hausdorff, Felix. [1914] 2002. Gesammelte Werke, Grundzüge der Mengenlehre, Bd. II, edited by Brieskorn, Egbert et al. Heidelberg: Springer.Google Scholar
Hausdorff, Felix. [1927] 2008. “Mengenlehre.” In Gesammelte Werke, Deskriptive Mengenlehre und Topologie, Bd. III, edited by Felgner, Ulrich et al., 41408. Heidelberg: Springer.Google Scholar
Hausdorff, Felix. 2012. Gesammelte Werke, Korrespondenz, Bd. IX. Edited by Purkert, Walter. Heidelberg: Springer.Google Scholar
Hesseling, Dennis E. 2003. Gnomes in the Fog: The Reception of Brouwer’s Intuitionism in the 1920s. Basel: Birkhäuser.CrossRefGoogle Scholar
Heyting, Arend, ed. 1975. L.E.J. Brouwer Collected Works, Vol I: Philosophy and Foundations of Mathematics. Amsterdam: North-Holland.Google Scholar
Hilbert, David. [1900] 1935. “Mathematische Probleme.” In Gesammelte Abhandlungen, Bd. 3, 290329. Berlin: Springer.Google Scholar
Hilbert, David. 1905. “Über die Grundlagen der Logik und der Arithmetik.” In Verhandlungen des III. Internationalen Mathematiker-Kongresses in Heidelberg 1904, Edited by Krazer, Adolf, 174–85. Leipzig: Teubner.Google Scholar
Hilbert, David. [1922] 1998. “The New Grounding of Mathematics, First Report.” In From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paolo and translated by Ewald, William, 198214. Oxford: Oxford University Press.Google Scholar
Hilbert, David. 2013. David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917-1933. Edited by Ewald, William and Sieg, Wilfried. Heidelberg: Springer.Google Scholar
Johnson, Dale M. 1979. “The Problem of the Invariance of Dimension in the Growth of Modern Topology, Part I.” Archive for History of Exact Sciences, 20: 97188.CrossRefGoogle Scholar
Johnson, Dale M. 1981. “The Problem of the Invariance of Dimension in the Growth of Modern Topology, Part II.” Archive for History of Exact Sciences, 25(2): 85266.CrossRefGoogle Scholar
Kanamori, Akihiro. 2004. “Zermelo and Set Theory.” Bulletin of Symbolic Logic 10(4): 487553.CrossRefGoogle Scholar
Mancosu, Paolo, ed. 1998a. From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Oxford: Oxford University Press.Google Scholar
Mancosu, Paolo. 1998b. “Hilbert and Bernays on Metamathematics.From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paulo, 149188. Oxford: Oxford University Press.Google Scholar
Mehrtens, Herbert. 1984. “Anschauungswelt versus Papierwelt. Zur historischen Interpretation der Grundlagenkrise der Mathematik.” TUB-Dokumentation Kongresse und Tagungen 19: 231–76.Google Scholar
Mehrtens, Herbert. 1987. “Ludwig Bieberbach and Deutsche Mathematik.” In Studies in the History of Mathematics, edited by Esther, R. Phillips, 195241. Washington, D.C.: Mathematical Association of America.Google Scholar
Mehrtens, Herbert. 1990. Moderne—Sprache—Mathematik. Eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt am Main: Suhrkamp.Google Scholar
Mehrtens, Herbert. 1992. “Revolutions Reconsidered.” In Revolutions in Mathematics, edited by Gillies, Donald, 4248, Oxford: Oxford University Press.CrossRefGoogle Scholar
Meschkowski, Herbert and Nilson, Winfried, (eds.). 1991. Georg Cantor Briefe. Berlin: Springer.Google Scholar
Moore, Gregory H. 1982. Zermelo’s Axiom of Choice: Its Origins, Development and Influence. New York: Springer.CrossRefGoogle Scholar
Peckhaus, Volker. 1990. Hilbertprogramm und Kritische Philosophie. Das Göttinger Modell interdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Plotkin, Jacob, ed. 2005. Hausdorff on Ordered Sets. Providence, RI: American Mathematical Society Publications.CrossRefGoogle Scholar
Peckhaus, Volker and Kahle, Reinhard. 2002. “Hilbert’s Paradox.” Historia Mathematica 29: 157175.CrossRefGoogle Scholar
Purkert, Walter. 2002. “Grundzüge der Mengenlehre – Historische Einführung.” In: Gesammelte Werke, Grundzüge der Mengenlehre, Bd. II, edited by Brieskorn, Egbert et al., 190. Heidelberg: Springer.Google Scholar
Purkert, Walter. 2015. “On Cantor’s Continuum Problem and Well Ordering: What really happened at the 1904 International Congress of Mathematicians in Heidelberg.” In A Delicate Balance: Global Perspectives on Innovation and Tradition in the History of Mathematics. A Festschrift in Honor of Joseph W. Dauben, edited by David E. Rowe and Wann-Sheng Horng, 3–24. Basel: Birkhäuser.CrossRefGoogle Scholar
Remmert, Volker R. 2008. “Wissen kommunizierbar machen – Zur Rolle des Fachberaters im mathematischen Verlag.” In Publikationsstrategien einer Disziplin – Mathematik in Kaiserreich und Weimarer Republik. Edited by Volker, R. Remmert and Schneider, Ute, 161187. Wiesbaden: Harrassowitz.Google Scholar
Remmert, Volker R. und Schneider, Ute. 2010. Eine Disziplin und ihre Verleger – Disziplinenkultur und Publikationswesen der Mathematik in Deutschland, 1871–1949. Bielefeld: Transkript.CrossRefGoogle Scholar
Rowe, David E. 1989. “Felix Klein, David Hilbert, and the Göttingen Mathematical Tradition.” In Science in Germany: The Intersection of Institutional and Intellectual Issues, edited by Kathryn Olesko. Osiris, 5: 186–213.Google Scholar
Rowe, David E. 1997. “Perspective on Hilbert.” Perspectives on Science 5: 533570.CrossRefGoogle Scholar
Rowe, David E. 2004. “Making Mathematics in an Oral Culture: Göttingen in the Era of Klein and Hilbert.” Science in Context 17(1/2): 85129.CrossRefGoogle Scholar
Rowe, David E. 2008. “Disciplinary Cultures of Mathematical Productivity in Germany.” In Publikationsstrategien einer Disziplin – Mathematik in Kaiserreich und Weimarer Republik. Edited by Remmert, Volker R. and Schneider, Ute, 951. Wiesbaden: Harrassowitz.Google Scholar
Rowe, David E. 2018a. A Richer Picture of Mathematics: The Göttingen Tradition and Beyond. New York: Springer.CrossRefGoogle Scholar
Rowe, David E. (ed.) 2018b. Otto Blumenthal, Ausgewählte Briefe und Schriften I, 1897–1918 . Mathematik im Kontext. Heidelberg: Springer.Google Scholar
Rowe, David E. 2023. “On the Origins of Cantor’s Paradox: What Hilbert Left Unsaid at the 1900 ICM in Paris.” Mathematical Intelligencer, online 23 March 2023, https://doi.org/10.1007/s00283-022-10259-x CrossRefGoogle Scholar
Rowe, David E. and Felsch, Volkmar (eds.). 2019. Otto Blumenthal, Ausgewählte Briefe und Schriften II, 1919–1944. Mathematik im Kontext. Heidelberg: Springer.CrossRefGoogle Scholar
Rowe, David E. and Schulmann, Robert (eds.) 2007. Einstein on Politics: His Private Thoughts and Public Stands on Nationalism, Zionism, War, Peace, and the Bomb. Princeton: Princeton University Press,Google Scholar
Schneider, Ute. 2008. “Konkurrenten auf dem mathematischen Markt – Verlagshäuser 1871 bis 1918.” In Publikationsstrategien einer Disziplin – Mathematik in Kaiserreich und Weimarer Republik. Edited by Volker R. Remmert and Ute Schneider, 109–140. Wiesbaden: Harrassowitz.Google Scholar
Schoenflies, Arthur. 1900. “Die Entwickelung der Lehre von den Punktmannigfaltigkeiten I.” Jahresbericht der Deutschen Mathematiker-Vereinigung 8, Heft 2.Google Scholar
Schoenflies, Arthur. 1908. “Die Entwickelung der Lehre von den Punktmannigfaltigkeiten II.” Jahresbericht der Deutschen Mathematiker-Vereinigung 16, Heft 2.Google Scholar
Schoenflies, Arthur. 1913. Entwickelung der Mengenlehre und ihrer Anwendungen. Leipzig: Teubner.Google Scholar
Scholz, Erhard. 2023. “Mathematical Modernism, Goal or Problem? The Opposing Views of Felix Hausdorff and Hermann Weyl.” In The Richness of the History and Philosophy of Mathematics. A Tribute to Jeremy Gray. Edited by Chemla, Karine, Ferreirós, José, Ji, Lizhen, Scholz, Erhard, and Wang, Chang, 479508. Heidelberg: Springer.Google Scholar
Siegmund-Schultze, Reinhard. 2009. Mathematicians Fleeing from Nazi Germany: Individual Fates and Global Impact. Princeton: Princeton University Press.CrossRefGoogle Scholar
Tobies, Renate. [2019] 2021. Felix Klein. Visions for Mathematics, Applications, and Education. Translated by Valentine, A. Pakis. Cham: Birkhäuser.Google Scholar
Tobies, Renate and Rowe, David E. (eds.). 1990. Korrespondenz Felix Klein – Adolph Mayer. Auswahl aus den Jahren 1871-1907. Teubner-Archiv zur Mathematik, Bd. 14. Leipzig: B.G. Teubner.CrossRefGoogle Scholar
Van Dalen, Dirk. 2013. L.E.J. Brouwer – Topologist, Intuitionist, Philosopher: How Mathematics Is Rooted in Life. Heidelberg: Springer.CrossRefGoogle Scholar
Van Dalen, Dirk and Remmert, Volker. 2006. “The Birth and Youth of Compositio Mathematica: Ce périodique foncièrement international.” Compositio Mathematica 142: 1083–1102.CrossRefGoogle Scholar
Van Dalen, Dirk and Rowe, David E. (eds.). 2020. L.E.J. Brouwer: Intuitionismus, 2nd ed. Heidelberg: Springer.CrossRefGoogle Scholar
Weyl, Hermann. [1921] 1998. “On the New Foundational Crisis of Mathematics.” In: From Hilbert to Brouwer: The Debate on the Foundations of Mathematics in the 1920s. Edited by Mancosu, Paulo, and translated by Müller, Benito, 86118. Oxford: Oxford University Press.Google Scholar