Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-29T15:18:46.179Z Has data issue: false hasContentIssue false

Research on the biomimetic quadruped jumping robot based on an efficient energy storage structure

Published online by Cambridge University Press:  12 September 2024

Tianyu Zhang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
Jieliang Zhao*
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
Chenyang Zhang
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
Qun Niu
Affiliation:
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
Shaoze Yan
Affiliation:
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
*
Corresponding author: Jieliang Zhao; Email: [email protected]

Abstract

The ability of quadruped robots to overcome obstacles is a critical factor that limits their practical application. Here, a design concept and a control algorithm are presented that aim at enhancing the explosive force of quadruped robots during jumping by utilizing elastic energy storage components. The hind legs of the quadruped robot are designed as energy storage units. Tension springs are utilized as components for storing energy and are installed in a parallel structure on the hind leg. Energy is stored during the compression process of the robot’s torso and released during the jumping phase. The optimal foot force is calculated using a single rigid body model. The mapping relationship between the force applied to the foot and the resulting joint torque is established by developing a dynamic model of the hind legs. Simulation experiments were conducted using the Webots physics engine to compare the impact of varying spring stiffness on joint torque during the jumping process. This study determined the optimal spring stiffness under specific conditions. The hind legs’ torque saving ratio reaches 19%, and the energy-saving ratio reaches 13%, which validates the effectiveness and feasibility of integrating elastic energy storage components.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, G., Peng, W., Wang, Z., Tu, J., Hu, H., Wang, D., Cheng, H. and Zhu, L., “Modeling of swimming posture dynamics for a beaver-like robot,” Ocean Eng 279, 114550 (2023).CrossRefGoogle Scholar
Chen, G., Xu, Y., Yang, C., Yang, X., Hu, H., Chai, X. and Wang, D., “Design and control of a novel bionic mantis shrimp robot,” IEEE-ASME Trans Mechatr 28(6), 33763385 (2023).CrossRefGoogle Scholar
Chen, G., Xu, Y., Yang, X., Hu, H., Cheng, H., Zhu, L., Zhang, J., Shi, J. and Chai, X., “Target tracking control of a bionic mantis shrimp robot with closed-loop central pattern generators,” Ocean Eng 297, 116963 (2024).CrossRefGoogle Scholar
Chen, G., Han, Y., Li, Y., Shen, J., Tu, J., Yu, Z., Zhang, J., Cheng, H., Zhu, L. and Dong, F., “Autonomous gait switching method and experiments of a hexapod walking robot for Mars environment with multiple terrains,” Intell Serv Robot 17, 533–553 (2024).CrossRefGoogle Scholar
Bledt, G., Powell, M. J., Katz, B., Di Carlo, J., Wensing, P. M. and Kim, S., “Mit cheetah 3: Design and control of a robust, dynamic quadruped robot,” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2018) pp. 22452252.Google Scholar
Di Carlo, J., Wensing, P. M., Katz, B., Bledt, G. and Kim, S., “Dynamic locomotion in the mit cheetah 3 through convex model-predictive control,” In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), (2018) pp. 19.Google Scholar
Yang, C., Jiang, Y., He, W., Na, J., Li, Z. and Xu, B., “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans Ind Electron 65(10), 81128123 (2018).CrossRefGoogle Scholar
Li, J., Cong, D., Yang, Y. and Yang, Z., “A new bionic hydraulic actuator system for legged robots with impact buffering, impact energy absorption, impact energy storage, and force burst,” Robotica 40(7), 24852502 (2022).CrossRefGoogle Scholar
He, Z., Meng, F., Liu, H., Wang, L., Zhu, X., Fan, X., Sato, R., Ming, A. and Huang, Q., “Method of design optimization and trajectory implementation on a small cat-like robot,” In: ROMANSY 22-Robot Design, Dynamics and Control: Proceedings of the 22nd CISM IFToMM Symposium, (2018) pp. 323330.Google Scholar
Park, H., Chuah, M. Y. and Kim, S., “Quadruped bounding control with variable duty cycle via vertical impulse scaling,” In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014) pp. 32453252.Google Scholar
K., G. K. and Pathak, P. M., “Dynamic modelling & simulation of a four legged jumping robot with compliant legs,” Robot Auton Syst 61(3), 221228 (2013).CrossRefGoogle Scholar
Semini, C., Tsagarakis, N. G., Vanderborght, B., Yang, Y. and Caldwell, D. G., “HyQ-Hydraulically actuated quadruped robot: Hopping leg prototype,” In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, (2008) pp. 593599.Google Scholar
Zhang, C., Chen, G., Li, Z., Qiu, X. and Guo, S., “Design and control of a foldable and reconfigurable multi-terrain vehicle with variable wheelbase,” J Mech Robot 15(2), 024501 (2023).CrossRefGoogle Scholar
Yin, X., Yan, J., Wen, S. and Zhang, J., “Spring-linkage integrated mechanism design for jumping robots,” Robot Auton Syst 158, 104268 (2022).CrossRefGoogle Scholar
He, Z., Meng, F., Liu, H., Fan, X., Liu, S., Sato, R., Ming, A. and Huang, Q., “Optimization of standing long jump strategy on a small quadruped robot,” In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2018) pp. 12261231.Google Scholar
Khakpour Komarsofla, A., Azadi Yazdi, E. and Eghtesad, M., “Dynamic modeling and control of a novel one-legged hopping robot,” Robotica 39(9), 16921710 (2022).CrossRefGoogle Scholar
Kazama, E., Sato, R., Miyamoto, I., Ming, A. and Shimojo, M., “Development of a small quadruped robot with bi-articular muscle-tendon complex,” In: 2015 IEEE international conference on robotics and biomimetics (ROBIO), (2015) pp. 10591064.Google Scholar
Sato, R., Miyamoto, I., Sato, K., Ming, A. and Shimojo, M., “Development of robot legs inspired by bi-articular muscle-tendon complex of cats,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015) pp. 15521557.Google Scholar
Park, H.-W., Wensing, P. M. and Kim, S., “Jumping over obstacles with MIT cheetah 2,” Robot Auton Syst 136, 103703 (2021).CrossRefGoogle Scholar
Zhong, J., Luo, M., Fan, J. and Zhao, J., “Trajectory planning of an intermittent jumping quadruped robot with variable redundant and underactuated joints,” Complexity 2018, 114 (2018).CrossRefGoogle Scholar
Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., Wüthrich, M., Naveau, M., Berenz, V., Heim, S., Widmaier, F. and Flayols, T., “An open torque-controlled modular robot architecture for legged locomotion research,” IEEE Robot Autom Lett 5(2), 36503657 (2020).CrossRefGoogle Scholar
Chen, X. and Hao, Z., “Microstructure, elastic modulus, and energy storage properties of portion II in the locust semi-lunar process,” AIP Adv 11(3), 035225 (2021).CrossRefGoogle Scholar
Bennet-Clark, H. C., “The energetics of the jump of the locust Schistocerca gregaria,” J Exp Biol 63(1), 5383 (1975).CrossRefGoogle ScholarPubMed
Burdick, J. and Fiorini, P., “Minimalist jumping robots for celestial exploration,” Int J Robot Res 22(7-8), 653674 (2003).CrossRefGoogle Scholar
Kovač, M., Fauria, O., Zufferey, J. and Floreano, D., “The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings,” In: 2011 IEEE International Conference on Robotics and Biomimetics, (2011) pp. 15031508.Google Scholar
Singh, C. and Liu, G., “Energy-aware redundant actuation for safe spring-assisted modular and reconfigurable robot,” Robotica 40(12), 44984511 (2022).CrossRefGoogle Scholar
Zhao, J., Xi, N., Gao, B., Mutka, M. W. and Xiao, L., “Development of a controllable and continuous jumping robot,” In: 2011 IEEE International Conference on Robotics and Automation, (2011) pp. 46144619.Google Scholar
Haldane, D. W., Yim, J. K. and Fearing, R. S., “Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2017) pp. 33453351.Google Scholar
Yim, J. K. and Fearing, R. S., “Precision jumping limits from flight-phase control in salto-1p,” In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), (2018) pp. 22292236.Google Scholar
Yim, J. K., Wang, E. K. and Fearing, R. S., “Drift-free roll and pitch estimation for high-acceleration hopping,” In: 2019 International Conference on Robotics and Automation (ICRA), (2019) pp. 89868992.Google Scholar
Kim, D., Di Carlo, J., Katz, B., Bledt, G. and Kim, S., “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control (2019), arXiv preprint arXiv:1909.06586.Google Scholar