Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T23:04:42.229Z Has data issue: false hasContentIssue false

Passive motion paradigm implementation via deep neural networks: analysis and verification

Published online by Cambridge University Press:  21 April 2025

Fuli Wang*
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, UK
Vishwanathan Mohan
Affiliation:
School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
Ashutosh Tiwari
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, UK
*
Corresponding author: Fuli Wang; Email: [email protected]

Abstract

In recent years, passive motion paradigms (PMPs), derived from the equilibrium point hypothesis and impedance control, have been utilised as manipulation methods for humanoid robots and robotic manipulators. These paradigms are typically achieved by creating a kinematic chain that enables the manipulator to perform goal-directed actions without explicitly solving the inverse kinematics. This approach leverages a kinematic model constructed through the training of artificial neural networks, aligning well with principles of cybernetics and cognitive computation by enabling adaptive and flexible control. Specifically, these networks model the relationship between joint angles and end-effector positions, facilitating the computation of the Jacobian matrix. Although this method does not require an accurate robot model, traditional neural networks often suffer from drawbacks such as overfitting and inefficient training, which can compromise the accuracy of the final PMP model. In this paper, we implement the method using a deep neural network and investigate the impact of activation functions and network depth on the performance of the kinematic model. Additionally, we propose a transfer learning approach to fine-tune the pre-trained model, enabling it to be transferred to other manipulator arms with different kinematic properties. Finally, we implement and evaluate the deep neural network-based PMP on the Universal Robots, comparing it with traditional kinematic controllers and assessing its physical interaction capabilities and accuracy.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Morasso, P., “Spatial control of arm movements,” Exp. Brain Res. 42(2), 223227 (1981).CrossRefGoogle ScholarPubMed
Uno, Y., Kawato, M. and Suzuki, R., “Formation and control of optimal trajectory in human multijoint arm movement,” Biol. Cybern. 61(2), 89101 (1989).CrossRefGoogle Scholar
Dingwell, J. B., Mah, C. D. and Mussa-Ivaldi, F. A., “Experimentally confirmed mathematical model for human control of a non-rigid object,” J. Neurophysiol. 91(3), 11581170 (2004). doi: 10.1152/jn.00704.2003.CrossRefGoogle ScholarPubMed
Ben-Itzhak, S. and Karniel, A., “Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements,” Neural Comput. 20(3), 779812 (2008). doi: 10.1162/neco.2007.12-05-077.CrossRefGoogle Scholar
Scott, S. H., “Optimal feedback control and the neural basis of volitional motor control,” Nat. Rev. Neurosci. 5(7), 532545 (2004).CrossRefGoogle ScholarPubMed
Zeidler, D., Frey, S., Kompa, K.-L. and Motzkus, M., “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64(2), 023420 (2001). doi: 10.1103/PhysRevA.64.023420.CrossRefGoogle Scholar
Diveev, A., Sofronova, E. and Konstantinov, S., “Approaches to numerical solution of optimal control problem using evolutionary computations,” Appl. Sci. 11(15), 7096 (2021). doi: 10.3390/app11157096.CrossRefGoogle Scholar
Billard, A. and Kragic, D., “Trends and challenges in robot manipulation,” Science 364(6446), eaat8414 (2019). doi: 10.1126/science.aat8414.CrossRefGoogle ScholarPubMed
Sharkawy, A. N., “Task location to improve human–robot cooperation: A condition number-based approach,” Automation 4(3), 263290 (2023). doi: 10.3390/automation4030016.CrossRefGoogle Scholar
Nah, M. C., Lachner, J. and Hogan, N., “Robot control based on motor primitives: A comparison of two approaches,” Int. J. Robot. Res. 43(12), 19591991 (2024). doi: 10.1177/02783649241258782.CrossRefGoogle Scholar
Schaal, S., “Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics,” In: Adaptive Motion of Animals and Machines (Springer, Tokyo, 2006) pp. 261280.CrossRefGoogle Scholar
Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P. and Schaal, S., “Dynamical movement primitives: Learning attractor models for motor behaviors,” Neural Comput. 25(2), 328373 (2013).CrossRefGoogle ScholarPubMed
Saveriano, M., Abu-Dakka, F. J., Kramberger, A. and Peternel, L., “Dynamic movement primitives in robotics: A tutorial survey,” Int. J. Robot. Res. 42(13), 11331184 (2023). doi: 10.1177/02783649231201196.CrossRefGoogle Scholar
Hogan, N. and Sternad, D., “Dynamic primitives of motor behavior,” Biol. Cybern. 106(11), 727739 (2012). doi: 10.1007/s00422-012-0527-1.CrossRefGoogle ScholarPubMed
Hogan, N. and Sternad, D., “Dynamic primitives in the control of locomotion,” Front. Comput. Neurosci. 7, 71 (2013). doi: 10.3389/fncom.2013.00071.CrossRefGoogle ScholarPubMed
Hogan, N., “Physical Interaction via Dynamic Primitives,” In: Geometric and Numerical Foundations of Movements (Springer International Publishing, 2017) pp. 269299.CrossRefGoogle Scholar
Mussa-Ivaldi, F. A., Morasso, P. and Zaccaria, R., “Kinematic networks: A distributed model for representing and regularizing motor redundancy,” Biol. Cybern. 60(1), 116 (1988).CrossRefGoogle ScholarPubMed
Hogan, N., “Impedance control: An approach to manipulation: Part II—Implementation,” J. Dyn. Syst. Meas. Control 107(1), 816 (1985). doi: 10.1115/1.3140713.CrossRefGoogle Scholar
Mohan, V. and Morasso, P., “Passive motion paradigm: An alternative to optimal control,” Front. Neurorobot. 5, 4 (2011). doi: 10.3389/fnbot.2011.00004.CrossRefGoogle ScholarPubMed
Bizzi, E., Hogan, N., Mussa-Ivaldi, F. A. and Giszter, S., “Does the nervous system use equilibrium-point control to guide single and multiple joint movements?,” Behav. Brain Sci. 15(4), 603613 (1992). doi: 10.1017/S0140525X00072538.CrossRefGoogle ScholarPubMed
Mohan, V., Bhat, A. and Morasso, P., “Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics,” Phys. Life Rev. 30, 89111 (2019). doi: 10.1016/j.plrev.2018.04.005.CrossRefGoogle ScholarPubMed
Morasso, P., Casadio, M., Mohan, V. and Zenzeri, J., “A neural mechanism of synergy formation for whole body reaching,” Biol. Cybern. 102(1), 4555 (2010).CrossRefGoogle ScholarPubMed
Mohan, V., Morasso, P., Zenzeri, J., Metta, G., Chakravarthy, V. S. and Sandini, G., “Teaching a humanoid robot to draw ‘shapes,” Auton. Robot. 31(1), 2153 (2011).CrossRefGoogle Scholar
Morasso, P. and Mohan, V., “Pinocchio: A language for action representation,” Cogn. Robot. 2, 119131 (2022). doi: 10.1016/j.cogr.2022.03.007.CrossRefGoogle Scholar
Wang, F., Urquizo, R. C., Roberts, P., Mohan, V., Newenham, C., Ivanov, A. and Dowling, R., “Biologically inspired robotic perception-action for soft fruit harvesting in vertical growing environments,” Precis. Agric. 24(3), 10721096 (2023).CrossRefGoogle ScholarPubMed
Mohan, V. and Morasso, P., “Towards reasoning and coordinating action in the mental space,” Int. J. Neural Syst. 17(4), 329341 (2007). doi: 10.1142/S0129065707001172.CrossRefGoogle ScholarPubMed
Raissi, M., Perdikaris, P. and Karniadakis, G. E., “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686707 (2019). doi: 10.1016/j.jcp.2018.10.045.CrossRefGoogle Scholar
Pan, S. J. and Yang, Q., “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng. 22(10), 13451359 (2010). doi: 10.1109/TKDE.2009.191.CrossRefGoogle Scholar
Sucan, I. A., Chitta, S. and Contributors, M. I., “MoveIt,” In: MoveIt: Motion Planning Framework (2013-2023). https://moveit.ros.org Google Scholar
Corke, P. and Haviland, J.. Not Your Grandmother’s Toolbox – The Robotics Toolbox Reinvented for Python. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China (2021) pp. 1135711363. doi: 10.1109/ICRA48506.2021.9561366 Google Scholar
Flash, T. and Hogan, N., “The coordination of arm movements: An experimentally confirmed mathematical model,” J. Neurosci. 5(7), 16881703 (1985). doi: 10.1523/JNEUROSCI.05-07-01688.1985.CrossRefGoogle ScholarPubMed
Spong, M. W., Hutchinson, S. and Vidyasagar, M.. Robot Modeling and Control, 2nd Edition (John Wiley and Sons, New York, 2020).Google Scholar
Zak, M., “Terminal attractors for addressable memory in neural networks,” Phys. Lett. A 133(1), 1822 (1988). doi: 10.1016/0375-9601(88)90728-1.CrossRefGoogle Scholar
Bhat, A. A., Akkaladevi, S. C., Mohan, V., Eitzinger, C. and Morasso, P., “Towards a learnt neural body schema for dexterous coordination of action in humanoid and industrial robots,” Auton. Robot. 41(4), 945966 (2017).CrossRefGoogle Scholar
Graves, A., “Long Short-Term Memory,” In: Supervised Sequence Labelling with Recurrent Neural Networks (Springer, 2012) pp. 3745.CrossRefGoogle Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I., “Attention Is All You Need,” In: Advances in Neural Information Processing Systems. vol. 30 (2017).Google Scholar