Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-30T07:12:24.749Z Has data issue: false hasContentIssue false

Instrumented bio-inspired cable-driven compliant continuum robot: static modeling and experimental evaluation

Published online by Cambridge University Press:  23 September 2024

Elie Gautreau
Affiliation:
Department of GMSC, Pprime Institute, University of Poitiers, CNRS, ISEA-ENSMA, UPR 3346, Poitiers, France
Xavier Bonnet
Affiliation:
CEBC Center of Biological Studies of Chizé (CEBC), CNRS, Villiers-en-Bois, France
Med Amine Laribi*
Affiliation:
Department of GMSC, Pprime Institute, University of Poitiers, CNRS, ISEA-ENSMA, UPR 3346, Poitiers, France
*
Corresponding author: Med Amine Laribi; Email: [email protected]

Abstract

Energy efficiency is inherent for autonomous robotic device. Snakes are well known for their ability to low energy consumption when swimming. However, the swimming know-how is poorly understood. Designing a snake robot inspired by snakes as a tool to find out the swimming energy efficiency crucial point will lead to the development of hyper efficient undulating locomotors. In this article, we introduce a four tendons driven continuum robot made of bio-inspired compliant vertebrae to assess the energy consumption of a planar and a spatial snake motion. The tendon-driven continuum robot constitutes the head–neck part of a locomotor snake robot. A static modeling coupled with an optimization method was implemented to generate bio-inspired motions recorded on snake swimming head. A friction model describing the friction between cables and the disks is investigated and compared to a frictionless model. The proposed prototype is equipped with exteroceptive sensors to record motion and proprioceptive sensors to measure cable forces applied at the tip of the robot. Hence, the work of the forces, thus the energy required to execute a trajectory are computed and analyzed. The energy is introduced as a key criterion to assess the swimming motion of a locomotor snake robot.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R. L., Mendelson, J. R. III, Choset, H., Hu, D. L. and Goldman, D. I., “Sidewinding with minimal slip: Snake and robot ascent of sandy slopes,” Science 346(6206), 224229 (2014). doi: 10.1126/science.1255718.CrossRefGoogle ScholarPubMed
Rollinson, D., Bilgen, Y., Brown, B., Enner, F., Ford, S., Layton, C., Rembisz, J., Schwerin, M., Willig, A., Velagapudi, P. and Choset, H., “Design and Architecture of a Series Elastic Snake Robot,” In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (IEEE, 2014) pp. 46304636.CrossRefGoogle Scholar
Owen, T., “Biologically inspired robots: snake-like locomotors and manipulators by shigeo hirose,” Robotica 12(3), 282282 (1994).Google Scholar
Crespi, A. and Ijspeert, A. J., “An Amphibious Snake Robot that Crawls and Swims using a Central Pattern Generator,” In: Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006), Brussels, Belgium (2006) pp. 19–27.Google Scholar
Liljeback, P., Stavdahl, O., Pettersen, K. Y. and Gravdahl, J. T., “Mamba A waterproof Snake Robot with Tactile Sensing,” In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (IEEE, 2014) pp. 294301.CrossRefGoogle Scholar
Zhao, X. and Fei, F., “The Development Status and Trend of Commercial Bionic Robots,” In: Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen China (ACM, 2021) pp. 13771381.CrossRefGoogle Scholar
Hirose, S. and Mori, M., “Biologically Inspired Snake-like Robots,” In: 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China (IEEE, 2004) pp. 17.Google Scholar
Thandiackal, R., Melo, K., Paez, L., Herault, J., Kano, T., Akiyama, K., Boyer, F., Ryczko, D., Ishiguro, A. and Ijspeert, A. J., “Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing,” Sci Robot 6(57), eabf6354 (2021). doi: 10.1126/scirobotics.abf6354.CrossRefGoogle ScholarPubMed
Liljeback, P., Pettersen, K. Y., Stavdahl, O. and Gravdahl, J. T., “Compliant Control of the Body Shape of Snake Robots,” In: 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China (IEEE, 2014) pp. 45484555.CrossRefGoogle Scholar
Mathou, A., Bonnet, X., Daoues, K., Ksas, R. and Herrel, A., “Evolutionary convergence of muscle architecture in relation to locomotor ecology in snakes,” J Anat 242(5), 862871 (2023). doi: 10.1111/joa.13823.CrossRefGoogle ScholarPubMed
Russo, M., Sadati, S. M. H., Dong, X., Mohammad, A., Walker, I. D., Bergeles, C., Xu, K. and Axinte, D. A., “Continuum robots: An overview,” Adv Intell Syst 5(5), 2200367 (2023). doi: 10.1002/aisy.202200367.CrossRefGoogle Scholar
Wang, Z., Jia, Z., Qian, S., Wang, D., Yu, X. and Liu, X., “An improved static model for bidirectional notched continuum robot considering the cable tension loss,” J Mech Robot 16(7), 071006 (2024). doi: 10.1115/1.4063454.CrossRefGoogle Scholar
Rone, W. S., Saab, W. and Ben-Tzvi, P., “Design, modeling, and integration of a flexible universal spatial robotic tail,” J Mech Robot 10(4), 041001 (2018). doi: 10.1115/1.4039500.CrossRefGoogle Scholar
Sofla, M. S., Sadigh, M. J. and Zareinejad, M., “Design and dynamic modeling of a continuum and compliant manipulator with large workspace,” Mech Mach Theory 164, 104413 (2021). doi: 10.1016/j.mechmachtheory.2021.104413.CrossRefGoogle Scholar
Sitler, J. L. and Wang, L., “A modular open-source continuum manipulator for underwater remotely operated vehicles,” J Mech Robot 14(6), 060906 (2022). doi: 10.1115/1.4054309.CrossRefGoogle Scholar
Hasanzadeh, S. and Janabi-Sharifi, F., “An efficient static analysis of continuum robots,” J Mech Robot 6(3), 031011 (2014). doi: 10.1115/1.4027305.CrossRefGoogle Scholar
Rone, W. S., Saab, W., Kumar, A. and Ben-Tzvi, P., “Controller design, analysis, and experimental validation of a robotic serpentine tail to maneuver and stabilize a quadrupedal robot,” J Dyn Syst Measure Control 141(8), 081002 (2019). doi: 10.1115/1.4042948.CrossRefGoogle Scholar
Gautreau, E., Sandoval, J., Bonnet, X., Arsicault, M., Zeghloul, S. and Laribi, M. A., “A New Bio-Inspired Hybrid Cable-Driven Robot (HCDR) to Design more Realistic Snakebots,” In: IEEE International Journal of Robotics and Automation (ICRA), Philadelphia, PA (IEEE, 2022) pp. 21342140.CrossRefGoogle Scholar
Gautreau, E., Sandoval, J., Arsicault, M., Bonnet, X., Zeghloul, S. and Laribi, M. A., “Kinematic Modelling of a Bioinspired Two Sections Serial Continuum Robot (SCR),” In: Advances in Service and Industrial Robotics, Müller, A. and Brandstötter, M., eds.) (Springer International Publishing, Cham, 2022) pp. 247255. Mechanisms and Machine Science.CrossRefGoogle Scholar
Webster, R. J. and Jones, B. A., “Design and kinematic modeling of constant curvature continuum robots: A review,” Int J Robot Res 29(13), 16611683 (2010). doi: 10.1177/0278364910368147.CrossRefGoogle Scholar
Yuan, H., Zhou, L. and Xu, W., “A comprehensive static model of cable-driven multi-section continuum robots considering friction effect,” Mech Mach Theory 135, 130149 (2019). doi: 10.1016/j.mechmachtheory.2019.02.005.CrossRefGoogle Scholar
Rao, P., Peyron, Q. and Burgner-Kahrs, J., “Shape representation and modeling of tendon-driven continuum robots using euler arc splines,” IEEE Robot Autom Lett 7(3), 81148121 (2022). doi: 10.1109/LRA.2022.3185377.CrossRefGoogle Scholar
Rao, P., Peyron, Q., Lilge, S. and Burgner-Kahrs, J., “How to model tendon-driven continuum robots and benchmark modelling performance,” Front Robot AI 7, 223 (2021). doi: 10.3389/frobt.2020.630245.CrossRefGoogle ScholarPubMed
Janabi-Sharifi, F., Jalali, A. and Walker, I. D., “Cosserat rod-based dynamic modeling of tendon-driven continuum robots: A tutorial,” IEEE Access 9, 6870368719 (2021). doi: 10.1109/ACCESS.2021.3077186.CrossRefGoogle Scholar
Porez, M., Boyer, F. and Ijspeert, A. J., “Improved Lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons,” Int J Robot Res 33(10), 13221341 (2014). doi: 10.1177/0278364914525811.CrossRefGoogle Scholar
Huang, S., Meng, D., Wang, X., Liang, B. and Lu, W., “A 3D Static Modeling Method and Experimental Verification of Continuum Robots Based on Pseudo-Rigid Body Theory,” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China (IEEE, 2019) pp. 46724677.CrossRefGoogle Scholar
Vedant, and Allison, J. T., “Pseudo-rigid-body dynamic models for design of compliant members,” J Mech Design 142(3), 031116 (2020). doi: 10.1115/1.4045602.CrossRefGoogle Scholar
Kelasidi, E., Pettersen, K. Y. and Gravdahl, J. T., “Energy efficiency of underwater robots,” IFAC-PapersOnLine 48(16), 152159 (2015). doi: 10.1016/j.ifacol.2015.10.273.CrossRefGoogle Scholar
Kelasidi, E., Pettersen, K. Y., Liljeback, P. and Gravdahl, J. T., “Locomotion Efficiency of Underwater Snake Robots with Thrusters,” In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland (IEEE, 2016) pp. 174181.CrossRefGoogle Scholar
Zheng, C., Li, G. and Hayashibe, M., “Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning,” Front Robot AI 9, 957931 (2022). doi: 10.3389/frobt.2022.957931.CrossRefGoogle ScholarPubMed
Gautreau, E., Bonnet, X., Sandoval, J., Fosseries, G., Herrel, A., Arsicault, M., Zeghloul, S. and Laribi, A. M., “A biomimetic method to replicate the natural fluid movements of swimming snakes to design aquatic robots,” Biomimetics 7(4), 223 (2022). doi: 10.3390/biomimetics7040223.CrossRefGoogle ScholarPubMed
Gautreau, E., Bonnet, X. and Laribi, M. A., “Optimal Synthesis and Experimental Validation of a Bio-Inspired Variable Stiffness Universal Compliant Joint for Continuum Robots,” In: Advances in Mechanism and Machine Science, (Okada, M., eds.) (Springer Nature Switzerland, Cham, 2023) pp. 419428. Mechanisms and Machine Science.CrossRefGoogle Scholar
Gautreau, E., Bonnet, X., Fox, T., Fosseries, G., Valle, Véry, Herrel, A. and Laribi, M. A., “Complementary methods to acquire the kinematics of swimming snakes: A basis to design bio-inspired robots,” J Bionic Eng 20(2), 668682 (2022). doi: 10.1007/s42235-022-00291-0.CrossRefGoogle Scholar