Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-29T20:33:25.702Z Has data issue: false hasContentIssue false

Dynamic modeling of wheeled biped robot and controller design for reducing chassis tilt angle

Published online by Cambridge University Press:  02 October 2024

Nan Mao*
Affiliation:
Centre for Robotics Research, King’s College London, London, UK Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, China
Junpeng Chen
Affiliation:
Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, China
Emmanouil Spyrakos-Papastavridis
Affiliation:
Centre for Robotics Research, King’s College London, London, UK
Jian S. Dai
Affiliation:
Centre for Robotics Research, King’s College London, London, UK Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, China
*
Corresponding author: Nan Mao; Email: [email protected]

Abstract

The wheeled-legged robot combines the advantages of wheeled and legged robots, making it easier to assist people in completing repetitive and time-consuming tasks in their daily lives. This paper presents a study on the kinematic and dynamic modeling, as well as the controller design, of a wheeled biped robot with a parallel five-bar linkage mechanism as its leg module. During the motion of the robot, the robot relies on the tilt angle of the inverted pendulum, and this angle often results in the tilting of the chassis of the robot, presenting challenges for the installation of upper-body payloads and sensor systems. The controller proposed in this paper, which is developed by decoupling the primary motions of the robot and designing a multi-objective, multilevel controller, addresses this issue. This controller employs the pendulum pitch angle of the equivalent inverted pendulum model as the control variable and compensates for the chassis tilt angle (CTA). This control method can effectively reduce the CTA of such robots and eliminate the need for additional counterweights. It also provides a more spacious structural design for accommodating upper-body devices. The effectiveness of this control framework is verified through variable height control, walking on flat ground, and carrying loads over rough terrain and slopes.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antonyshyn, L., Silveira, J., Givigi, S. and Marshall, J., “Multiple mobile robot task and motion planning: A survey,” ACM Comput Surv 55(10), 135 (2023).CrossRefGoogle Scholar
Tang, H., Zhang, J. W., Pan, L. and Zhang, D., “Optimum design for a new reconfigurable two-wheeled self-balancing robot based on virtual equivalent parallel mechanism,” J Mech Design 145(5), 053302 (2023).CrossRefGoogle Scholar
Yamafuji, K. and Kawamura, T., “Postural control of a monoaxial bicycle,” J Robot Soc Japan 7(4), 338343 (1989).CrossRefGoogle Scholar
Grasser, F., D’arrigo, A., Colombi, S. and Rufer, A. C., “JOE: A mobile, inverted pendulum,” IEEE Trans Ind Electron 49(1), 107114 (2002).CrossRefGoogle Scholar
Prado, M., Simón, A., Pérez, A. and Ezquerro, F., “Effects of terrain irregularities on wheeled mobile robot,” Robotica 21(2), 143152 (2003).CrossRefGoogle Scholar
Luo, J., Ye, S., Su, J. and Jin, B., “Prismatic Quasi-direct-drives for dynamic quadruped locomotion with high payload capacity,” Int J Mech Sci 235, 107698 (2022).CrossRefGoogle Scholar
Giberti, H., Cinquemani, S. and Ambrosetti, S., “5R 2dof parallel kinematic manipulator-A multidisciplinary test case in mechatronics,” Mechatronics 23(8), 949959 (2013).CrossRefGoogle Scholar
Kau, N., Schultz, A., Ferrante, N. and Slade, P., “Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped,” In: 2019 International Conference on Robotics and Automation (ICRA), (IEEE, 2019) pp. 63096315.CrossRefGoogle Scholar
Ottaviano, E. and Rea, P., “Design and operation of a 2-DOF leg-wheel hybrid robot,” Robotica 31(8), 13191325 (2013).CrossRefGoogle Scholar
Cao, J., Zhang, J., Wang, T., Meng, J., Li, S. and Li, M., “Mechanism design and dynamic switching modal control of the wheel-legged separation quadruped robot,” Robotica 42(3), 660683 (2024).CrossRefGoogle Scholar
Dai, J. S. and Jones, J. R., “Mobility in metamorphic mechanisms of foldable/Erectable kinds,” J Mech Design 121(3), 375382 (1999).CrossRefGoogle Scholar
Dai, J. S., Huang, Z. and Lipkin, H., “Mobility of overconstrained parallel mechanisms,” J Mech Design 128(1), 220229 (2004).CrossRefGoogle Scholar
Kuo, C. H., Dai, J. S. and Yan, H. S., “Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, (IEEE, 2009) pp. 17.Google Scholar
Aimedee, F., Gogu, G., Dai, J. S., Bouzgarrou, C. and Bouton, N., “Systematization of morphing in reconfigurable mechanisms,” Mech Mach Theory 96, 215224 (2016).CrossRefGoogle Scholar
Dai, J. S. and Wang, D., “Geometric analysis and synthesis of the metamorphic robotic hand,”Journal,” J Mech Des 129(11), 11911197 (2007).CrossRefGoogle Scholar
Dai, J. S., Holland, N. and Kerr, D. R., “Finite twist mapping and its application to planar serial manipulators with revolute joints,” Proc Inst Mech Eng Pt C J Mech Eng Sci 209(4), 263271 (1995).CrossRefGoogle Scholar
Dai, J. S., Wang, D. and Cui, L., “Orientation and workspace analysis of the multifingered metamorphic hand-metahand,” IEEE Trans Robot 25(4), 942947 (2009).CrossRefGoogle Scholar
Wei, G., Dai, J. S., Wang, S. and Luo, H., “Kinematic analysis and prototype of a metamorphic anthropomorphic hand with a reconfigurable palm,” Int J Hum Robot 8(03), 459479 (2011).CrossRefGoogle Scholar
Cui, L. and Dai, J. S., “Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm,” J Mech Robot 3(2), 021001 (2011).CrossRefGoogle Scholar
Cui, L. and Dai, J. S., “Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand,” J Mech Robot 4(3), 034502 (2012).CrossRefGoogle Scholar
Zhang, C., Zhang, C., Dai, J. S. and Qi, P., “Stability margin of a metamorphic quadruped robot with a twisting trunk,” J Mech Robot 11(6), 064501 (2019).CrossRefGoogle Scholar
Tang, Z., Wang, K., Spyrakos-Papastavridis, E. and Dai, J. S., “Origaker: A novel multi-mimicry quadruped robot based on a metamorphic mechanism,” J Mech Robot 14(6), 060907 (2022).CrossRefGoogle Scholar
Tang, Z. and Dai, J. S., “Bifurcated configurations and their variations of an 8-bar linkage derived from an 8-kaleidocycle,” Mech Mach Theory 121, 745754 (2018).CrossRefGoogle Scholar
Fu, J., Chen, J., Tang, Z., Wei, Z. and Dai, J. S., “Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk,” In: 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), (IEEE, 2023) pp. 17.CrossRefGoogle Scholar
Li, M., Shi, W., Chen, J., Zhuang, Z. and Dai, J. S., “Design and Analysis of 8R-Folding Metamorphic Mechanism and Metamorphic Robot,” In: Advances in Mechanism and Machine Science, (Okada, M., eds.) (Springer Nature Switzerland, Cham, 2024) pp. 426435.CrossRefGoogle Scholar
Gu, Y., Feng, S., Guo, Y., Wan, F., Dai, J. S., Pan, J. and Song, C., “Overconstrained coaxial design of robotic legs with omni-directional locomotion,” Mech Mach Theory 176, 105018 (2022).CrossRefGoogle Scholar
Chen, J., Pan, Y., Yu, J., Feng, H. and Dai, J. S., “Velocity index and wading height based design method of trajectory parameters for a coupled parallelogram legged walking robot,” Mech Mach Theory 191, 105464 (2024).CrossRefGoogle Scholar
Chen, J., Pan, Y., Li, M., Zhu, R., Gao, M., Wang, K., Xiao, X., Deng, L. and Dai, J. S., “Analysis of the Obstacle-Crossing Capability for a Coupled Parallelogram Leg,” In: Advances in Mechanism and Machine Science, (Okada, M., eds.) (Springer Nature Switzerland, Cham, 2023) pp. 713722.CrossRefGoogle Scholar
Pan, Y. and Gao, F., “Position model computational complexity of walking robot with different parallel leg mechanism topology patterns,” Mech Mach Theory 107, 324337 (2017).CrossRefGoogle Scholar
Zhou, Y., Pan, Y., Chen, J. and Lei, T., “Variable time-step physics engine with continuous compliance contact model for optimal robotic grinding trajectory planning,” Sensors 24(5), 1415 (2024).CrossRefGoogle ScholarPubMed
Wang, S., Cui, L., Zhang, J., Lai, J., Zhang, D., Chen, K., Zheng, Y., Zhang, Z. and Jiang, Z.-P., “Balance Control of a Novel Wheel-Legged Robot: Design and Experiments,” In: 2021 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2021) pp. 67826788.CrossRefGoogle Scholar
Saglia, J. A., Tsagarakis, N. G., Dai, J. S. and Caldwell, D. G., “Control Strategies for Ankle Rehabilitation Using a High Performance Ankle Exerciser,” In: 2010 IEEE International Conference on Robotics and Automation, (IEEE, 2010) pp. 22212227.CrossRefGoogle Scholar
Saglia, J. A., Tsagarakis, N. G., Dai, J. S. and Caldwell, D. G., “Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation proceedings of the institution of mechanical engineers,” Proc Inst Mech Eng Pt I J Syst Control Eng 223(1), 5370 (2008).Google Scholar
Klemm, V., Morra, A., Gulich, L., Mannhart, D., Rohr, D., Kamel, M., d. Viragh, Y. and Siegwart, R., “LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops,” IEEE Robot Autom Lett 5(2), 37453752 (2020).CrossRefGoogle Scholar
Xin, S. and Vijayakumar, S., “Online Dynamic Motion Planning and Control for Wheeled Biped Robots,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2020) pp. 38923899.CrossRefGoogle Scholar
Chen, H., Wang, B., Hong, Z., Shen, C., Wensing, P. M. and Zhang, W., “Underactuated motion planning and control for jumping with wheeled-bipedal robots,” IEEE Robot Autom Lett 6(2), 747754 (2021).CrossRefGoogle Scholar
Zhang, C., Liu, T., Song, S., Wang, J. and Meng, M. Q.-H., “Dynamic wheeled motion control of wheel-biped transformable robots,” Biomimet Intell Robot 2(2), 100027 (2022).CrossRefGoogle Scholar
Chang, X., An, H. and Ma, H., “Modeling and base parameters identification of legged robots,” Robotica 40(3), 747761 (2022).CrossRefGoogle Scholar
Siravuru, A., Shah, S. V. and Krishna, K. M., “An optimal wheel-torque control on a compliant modular robot for wheel-slip minimization,” Robotica 35(2), 463482 (2017).CrossRefGoogle Scholar
Shen, Y., Chen, G., Li, Z., Wei, N., Lu, H., Meng, Q. and Guo, S., “Cooperative control strategy of wheel-legged robot based on attitude balance,” Robotica 41(2), 566586 (2023).CrossRefGoogle Scholar
Zhu, B., He, J. and Sun, J., “Kinematic modeling and hybrid motion planning for wheeled-legged rovers to traverse challenging terrains,” Robotica 42(1), 153178 (2024).CrossRefGoogle Scholar
Zhang, J., Li, G., Liu, F. and Liu, Y., “Design of a Two-Wheeled Self-Balance Personal Transportation Robot,” In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), (IEEE, 2016) pp. 225228.CrossRefGoogle Scholar
Zhang, L. and Dai, J. S., “Reconfiguration of spatial metamorphic mechanisms,” J Mech Robot 1(1), 011012 (2008).Google Scholar
Kim, S. and Kwon, S. J., “Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot,” Int J Control Autom Syst 13(4), 926933 (2015).CrossRefGoogle Scholar
Dong, H., Asadi, E., Qiu, C., Dai, J. and Chen, I.-M., “Geometric design optimization of an under-actuated tendon-driven robotic gripper,” Robot Comp Int Manuf 50, 8089 (2018).CrossRefGoogle Scholar
Wang, C., Jianliang, X. and Zhang, C., “Fuzzy neural network active disturbance rejection control for two-wheeled self-balanced robot,” J Inf Proc Syst 18(4), 510523 (2022).Google Scholar
Zhao, J., Li, J. and Zhou, J., “Research on two-round self-balancing robot SLAM based on the gmapping algorithm,” Sensors 23(5), 2489 (2023).CrossRefGoogle ScholarPubMed
Téllez, R. and Angulo, C., “Webots Simulator 5.1. 7. “Developed and supported by cyberbotics ltd,” Artif Life 13(3), 313318 (2007).CrossRefGoogle ScholarPubMed