Hostname: page-component-6bf8c574d5-zc66z Total loading time: 0 Render date: 2025-03-11T17:10:33.566Z Has data issue: false hasContentIssue false

The preservation potential of loess in low-elevation mountains (Mecsek Mountains, Hungary)

Published online by Cambridge University Press:  27 February 2025

Krisztina Sebe*
Affiliation:
HUN-REN–MTM–ELTE Research Group for Paleontology, 1083 Budapest, Ludovika tér 2, Hungary
Sándor Józsa
Affiliation:
Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Petrology and Geochemistry, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
Réka Lukács
Affiliation:
Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences (MTA Centre of Excellence), Budaörsi út 45, H-1112 Budapest, Hungary HUN-REN-ELTE Volcanology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
Gergely Surányi
Affiliation:
Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Geophysics and Space Science, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary HUN-REN Wigner Research Centre for Physics, Konkoly-Thege út 29-33, 1121 Budapest, Hungary
Szabolcs Harangi
Affiliation:
Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Petrology and Geochemistry, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary HUN-REN-ELTE Volcanology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
Ágnes Novothny
Affiliation:
Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
*
Corresponding author: Krisztina Sebe; Email: [email protected]

Abstract

Loess–paleosol outcrops were logged and dated to trace loess cover during the Pleistocene in a low-elevation mountainous area. The exposed successions were a maximum of 15 m thick and stratigraphically fragmentary. Still, results suggest that loess was deposited in all climatically suitable periods within the limits of the dating methods (ca. 400 ka), and probably also beyond this. Luminescence measurements provided numerical ages from ca. 18 ka to ca. 200 ka and minimum ages of up to >267 ka. Loess accumulation was also active during the relatively mild MIS 3. A new occurrence of a well-preserved Quaternary tephra was documented, correlative with the middle Pleistocene Bag Tephra (ca. 340 or 368 ka). The dating of loess successions provided valuable data on geomorphic evolution as well, identifying hydrological changes and constraining a maximum incision and uplift rate of 0.008–0.035 mm/yr for the western part of the area. The low thickness of loess–paleosol successions and the stratigraphic gaps seem to be a consequence of repeated erosion during the Pleistocene rather than a result of non-deposition. The mountains probably have been covered with loess for most of the time during the past 1 Ma. This should be taken into consideration in studies influenced by the loess cover of an area.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoine, P., Lagroix, F., Jordanova, D., Jordanova, N., Lomax, J., Fuchs, M., Debret, M. et al., 2019. A remarkable late Saalian (MIS 6) loess (dust) accumulation in the Lower Danube at Harletz (Bulgaria). Quaternary Science Reviews 207, 80100. https://doi.org/10.1016/j.quascirev.2019.01.005.CrossRefGoogle Scholar
Bada, G., Grenerczy, Gy., Tóth, L., Horváth, F., Stein, S., Cloetingh, S., Windhoffer, G., Fodor, L., Pinter, N., Fejes, I., 2007. Motion of Adria and ongoing inversion of the Pannonian Basin: Seismicity, GPS velocities, and stress transfer. In: Stein, S., Mazzotti, S. (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper 425, 243262.Google Scholar
Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Marković, S.B., Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234, 6274.CrossRefGoogle Scholar
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for middle and late Pleistocene sediments. Boreas 41, 435451.CrossRefGoogle Scholar
Channell, J.E.T., Hodell, D.A., Curtis, J.H., 2016. Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP site U1308: North Atlantic RPI stack for 1.2–2.2 Ma (NARPI-2200) and age of the Olduvai subchron. Quaternary Science Reviews 131, 119.CrossRefGoogle Scholar
Csillag, G., Sebe, K., Pazonyi, P., 2023. Tengelici Vörösagyag Formáció [Tengelic Red Clay Fm.]. In: Babinszki, E., Piros, O., Csillag, G., Fodor, L., Gyalog, L., Zs., Kercsmár, Gy., Less, et al. (Eds.), Magyarország Litosztratigráfiai Egységeinek Leírása II. Kainozoos Képződmények [Lithostratigraphic Units of Hungary II. Cenozoic Formations]. Supervising Authority of Regulated Activities, Budapest, p. [in Hungarian]Google Scholar
Csonka, D., Bradák, B., Barta, G., Szeberényi, J., Novothny, Á., Végh, T., Süle, G.T., Horváth, E., 2020. A multi-proxy study on polygenetic middle- to late Pleistocene paleosols in the Hévízgyörk loess–paleosol sequence (Hungary). Quaternary International 552, 2535. https://doi.org/10.1016/j.quaint.2019.07.021.CrossRefGoogle Scholar
Fodor, L., Bada, G., Csillag, G., Horváth, E., Ruszkiczay-Rüdiger, Zs., Palotás, K., Síkhegyi, F., Timár, G., Cloetingh, S., Horváth, F., 2005. An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin. Tectonophysics 410, 1541.CrossRefGoogle Scholar
Frechen, M., Schweitzer, U., Zander, A., 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14, 1517.CrossRefGoogle Scholar
Frechen, M., Horváth, E., Gábris, Gy., 1997. Geochronology of middle and upper Pleistocene loess sections in Hungary. Quaternary Research 48, 291312.CrossRefGoogle Scholar
Galović, L., 2016. Sedimentological and mineralogical characteristics of the Pleistocene loess/paleosol sections in the eastern Croatia. Aeolian Research 20, 723. http://dx.doi.org/10.1016/j.aeolia.2015.10.007.CrossRefGoogle Scholar
Galović, L., Frechen, M., Halamić, J., Durn, G., Romić, M., 2009. Loess chronostratigraphy in eastern Croatia—a luminescence dating approach. Quaternary International 198, 8597. https://doi.org/10.1016/j.quaint.2008.02.004.CrossRefGoogle Scholar
Gertig, B., 1955. Hozzászólás Szabó P. Z.: a fiatal kéregmozgások geomorfológiai és népgazdasági jelentősége Déldunántúlon c. előadásához [A comment on the presentation “A fiatal kéregmozgások geomorfológiai és népgazdasági jelentősége Déldunántúlon” of P.Z. Szabó]. Dunántúli Tudományos Gyűjtemény 4, 136. [in Hungarian]Google Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29, 58.CrossRefGoogle Scholar
Gyalog, L., Síkhegyi, F., 2001. Magyarország 1:100 000-es földtani térképsorozata [1:100 000 Geological Map Series of Hungary]. Geological Institute of Hungary, Budapest.Google Scholar
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M., Jäger, K.-D., 2007. Loess in Europe—its spatial distribution based on a European loess map, scale 1:2,500,000. Quaternary Science Reviews 26, 13011312.CrossRefGoogle Scholar
Horváth, E., 2001. Marker horizons in the loesses of the Carpathian Basin. Quaternary International 76/77, 157163.CrossRefGoogle Scholar
Hum, L., 2005. Középső pleisztocén tufithorizontok megjelenése a dunaszekcsői és a Mórágy környéki löszszelvényekben [On the presence of middle Pleistocene tuff horizons in the loess profiles of Dunaszekcső and the vicinity of Mórágy]. Malakológiai Tájékoztató 23, 131148. [in Hungarian]Google Scholar
Huntley, D.J., Baril, M.R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.CrossRefGoogle Scholar
Huntley, D.J., Lamothe, M., 2001. Ubiquity of anomalous fading in K-feldspars, and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.CrossRefGoogle Scholar
Kercsmár, Zs. (Ed.), Budai, T., Csillag, G., Kercsmár, Zs., Selmeczi, I., Sztanó, O., 2015. Surface geology of Hungary. Explanatory notes to the Geological map of Hungary (1:500 000). Geological and Geophysical Institute of Hungary, Budapest, p.Google Scholar
Koloszár, L., Marsi, I., 2010. The thickest and the most complete loess sequence in the Carpathian Basin: the borehole Udvari-2A. Central European Journal of Geosciences 2, .Google Scholar
Kürthy, D., Szakmány, Gy., Józsa, S., Szabó, G., 2013. A regölyi kora vaskori sírhalom kőzetleleteinek előzetes archeometriai vizsgálati eredményei [Preliminary archaeometric study of rock types from the early-iron age mound grave in Regöly]. Archeometriai Műhely 2013/X 2, 111125. [in Hungarian]Google Scholar
Laag, C., Hambach, U., Zeeden, C., Lagroix, F., Guyodo, Y., Veres, D., Jovanović, M., Marković, S.B., 2021. A detailed paleoclimate proxy record for the middle Danube Basin over the last 430 kyr: a rock magnetic and colorimetric study of the Zemun Loess–Paleosol Sequence. Frontiers in Earth Science 9, , https://doi.org/10.3389/feart.2021.600086.CrossRefGoogle Scholar
Lang, A., Lindauer, S., Kuhn, R., Wagner, G.A., 1996. Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Ancient TL 14, 711.CrossRefGoogle Scholar
Lehmkuhl, F., Bösken, J., Hošek, J., Sprafke, T., Marković, S-B., Obreht, I., Hambach, U., et al., 2018. Loess distribution and related Quaternary sediments in the Carpathian Basin. Journal of Maps 14, 673682. https://doi.org/10.1080/17445647.2018.1526720.CrossRefGoogle Scholar
Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., et al., 2021. Loess landscapes of Europe–Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews 215, . https://doi.org/10.1016/j.earscirev.2020.103496.CrossRefGoogle Scholar
Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M.A., Gao, G., 2020. Loess genesis and worldwide distribution. Earth-Science Reviews 201, . https://doi.org/10.1016/j.earscirev.2019.102947.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic ∂18O records. Paleoceanography 20, . https://doi.org/10.1029/2004PA001071.Google Scholar
Marković, S.B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., McCoy, W.D., Oches, E.A., Buggle, B., Zöller, L., 2011. The last million years recorded at the Stari Slankamen loess–palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30, 11421154.CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al., 2015. Danube loess stratigraphy—towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.CrossRefGoogle Scholar
Meijer, N., van der Meulen, B., 2022. Loss of loess in the geological record due to poor preservation. Terra Nova 35, 185192.CrossRefGoogle Scholar
Moldvay, L., 1964. Adatok a mecsekhegységi lösz földtani viszonyainak vizsgálatához [Data for the examination of the geological conditions of loess in the Mecsek Mountains]. Annual Report of the Geological Institute of Hungary from 1962, pp. 91103. [in Hungarian]Google Scholar
Muhs, D.R., Bettis, E.A., III, 2003. Quaternary loess–paleosol sequences as examples of climate-driven sedimentary extremes. In: Chan, M.A., Archer, A.W. (Eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America Special Paper 370, 5374.Google Scholar
Namier, N., Hao, Q., Gao, X., Fu, Y., Marković, S.B., Hambach, U., Veres, D., et al., 2023. Comprehensive magnetic analysis of the tephras in middle–late Pleistocene loess records of Serbia, and implications for tephra identification, correlation and loess chronology. Quaternary Science Reviews 313, . https://doi.org/10.1016/j.quascirev.2023.108202.CrossRefGoogle Scholar
Novothny, Á., Frechen, M., Horváth, E., Wacha, L., Rolf, C., 2011. Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, high resolution grain size, and magnetic susceptibility data. Quaternary International 234, 7585.CrossRefGoogle Scholar
Novothny, Á., Barta, G., Végh, T., Bradák, B., Surányi, G., Horváth, E., 2020. Correlation of drilling cores and the Paks brickyard key section at the area of Paks, Hungary. Quaternary International 552, 5061.CrossRefGoogle Scholar
Novothny, Á., Horváth, E., Újvári, G., 2023. Paksi Lösz Formáció [Paks Loess Formation]. In: Babinszki, E., Piros, O., Csillag, G., Fodor, L., Gyalog, L., Zs., Kercsmár, Gy., Less, et al. (Eds.), Magyarország Litosztratigráfiai Egységeinek Leírása II. Kainozoos Képződmények [Lithostratigraphic Units of Hungary II. Cenozoic Formations]. Supervising Authority of Regulated Activities, Budapest, pp. 158160. [in Hungarian]Google Scholar
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S., Lehmkuhl, F., 2019. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Science Reviews 190, 498520. https://doi.org/10.1016/j.earscirev.2019.01.020.CrossRefGoogle Scholar
Pazonyi, P., Virág, A., Gere, K., Botfalvai, G., Sebe, K., Szentesi, Z., Mészáros, L., Botka, D., Gasparik, M., Korecz, L., 2018. Sedimentological, taphonomical and palaeoecological aspects of the late Early Pleistocene vertebrate fauna from the Somssich Hill 2 site (South Hungary). Comptes Rendus Palevol 17, 296309.CrossRefGoogle Scholar
Perić, Z.M., Marković, S.B., Sipos, G., Gavrilov, M.B., Thiel, C., Zeeden, C., Murray, A.S., 2020. A post‐IR IRSL chronology and dust mass accumulation rates of the Nosak loess–palaeosol sequence in northeastern Serbia. Boreas 49, 841857.CrossRefGoogle Scholar
Perić, Z.M., Marković, S.B., Avram, A., Timar-Gabor, A., Zeeden, C., Nett, J.J., Fischer, P., Fitzsimmons, K.E., Gavrilov, M.B., 2022a. Initial quartz OSL and dust mass accumulation rate investigation of the Kisiljevo loess sequence in north-eastern Serbia. Quaternary International 620, 1323.CrossRefGoogle Scholar
Perić, Z.M., Stevens, T., Obreht, I., Hambach, U., Lehmkuhl, F., Marković, S.B., 2022b. Detailed luminescence dating of dust mass accumulation rates over the last two glacial–interglacial cycles from the Irig loess–palaeosol sequence, Carpathian Basin. Global and Planetary Change 215, . https://doi.org/10.1016/j.gloplacha.2022.103895.CrossRefGoogle Scholar
Perić, Z.M., Ryan, C., Alexanderson, H., Marković, S.B., 2024. Revised OSL chronology of the Kisiljevo loess–palaeosol sequence: new insight into the dust flux in the eastern Carpathian Basin during MIS 3–MIS 1. Quaternary International 698, 3948. https://doi.org/10.1016/j.quaint.2024.06.006.CrossRefGoogle Scholar
Pirkhoffer, E., 1998. Fosszilis medermaradvány a Nyugat-Mecsek déli előterében [Pliocene channel remnant in the southern foreland of the Western Mecsek]. Közlemények a Janus Pannonius Tudományegyetem Földrajzi Intézetének Természetföldrajz Tanszékéről [Papers from Department of Physical Geography, Institute of Geography, Janus Pannonius University, Pécs] 9, 314. [in Hungarian]Google Scholar
Porkoláb, K., Broerse, T., Kenyeres, A., Békési, E., Tóth, S., Magyar, B., Wesztergom, V., 2023. Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data. Acta Geodaetica et Geophysica 58, 149173.CrossRefGoogle Scholar
Pouclet, A., Horváth, E., Gábris, Gy., Juvigné, E., 1999. The Bag Tephra, a widespread tephrochronological marker in Middle Europe: chemical and mineralogical investigations. Bulletin of Volcanology 60, 265272.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating: large depth and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667. https://doi.org/10.1016/0277-3791(95)00047-X.CrossRefGoogle Scholar
Radaković, M.G., Gavrilović, B., Gavrilov, M.B., Marković, R.S., Hao, Q., Schaetzl, R.J., Zeeden, C., et al., 2024. A glacial–interglacial malacofauna record from the Titel Loess Plateau, Serbia, between ∼350 and 250 ka. Quaternary 7, . https://doi.org/10.3390/quat7020028.CrossRefGoogle Scholar
Rees-Jones, J., 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL 13, 914.CrossRefGoogle Scholar
Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R.N., Boschi, C., Hellstrom, J.C., Francke, A., Wagner, B., 2018. A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Global and Planetary Change 162, 3952. https://doi.org/10.1016/j.gloplacha.2018.01.003.CrossRefGoogle Scholar
Reusser, L.J., Bierman, P.R., Pavich, M.J., Zen, E.-A., Larsen, J., Finkel, R., 2004. Rapid late Pleistocene incision of Atlantic passive-margin river gorges. Science 305, 499502.CrossRefGoogle ScholarPubMed
Ruszkiczay-Rüdiger, Zs., Kern, Z., 2016. Permafrost or seasonal frost? A review of paleoclimate proxies of the last glacial cycle in the East Central European lowlands. Quaternary International 415, 241252.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Zs., Braucher, R., Á, Novothny., Csillag, G., Fodor, L., Molnár, G., Madarász, B., ASTER Team, 2016. Tectonic and climatic control on terrace formation: coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe. Quaternary Science Reviews 131, 127147.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Zs., Balázs, A., Csillag, G., Drijkoningen, G., Fodor, L., 2020. Uplift of the Transdanubian Range, Pannonian Basin: how fast and why? Global and Planetary Change 192, . https://doi.org/10.1016/j.gloplacha.2020.103263.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Zs., Knudsen, M.F., Bauer, M., Telbisz, T., Team, ASTER, Sebe, K., 2024. Variations in Quaternary loess cover and bedrock denudation rates constrained using the 26Al/10Be cosmogenic nuclide pair, Western Mecsek Mountains, Hungary. COSMO 2024, 6th Workshop on Cosmogenic Nuclides, Cologne, 20–24 May 2024, Abstract Book. Köln, Németország, Universität zu Köln, pp. 7576.Google Scholar
Sági, T., Kiss, B., Bradák, B., Harangi, Sz., 2008. Middle Pleistocene volcanic deposits in loess in Hungary: field and petrographical characteristics. Földtani Közlöny 138, 297310.Google Scholar
Sebe, K., 2013. Ventifacts in the Mecsek region (SW Hungary) – climatic interpretation and tectonic implications. Zeitschrift für Geomorphologie 57, 305323. http://dx.doi.org/10.1127/0372-8854/2013/0103.CrossRefGoogle Scholar
Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Zs., Fodor, L.I., Thamó-Bozsó, E., Müller, P.M., Braucher, R., 2011a. Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary) and its implications on yardang formation. Geomorphology 134, 470482.CrossRefGoogle Scholar
Sebe, K., Csillag, G., Thamóné Bozsó, E., 2011b. Platóhelyzetű eolikus üledékek és formák az Agár-tető Bazaltfennsíkján (Déli-Bakony) [Mountain-top aeolian deposits and ventifacts on the basalt plateau of Agár-tető (Southern Bakony, Hungary)]. Földtani Közlöny 141, 393399. [in Hungarian]Google Scholar
Sebe, K., Csillag, G., Szabó, M., Virág, A., Gasparik, M., Novothny, Á., 2021a. Új őslénytani adat a Tengelici Vörösagyag felszíni kifejlődéséből: a bükkösdi mamut [New palaeontological data from the surface facies of the Tengelic Red Clay: the mammoth of Bükkösd]. In: Bosnakoff, M., Főzy, I., Szives, O. (Eds.), Program, előadáskivonatok, kirándulásvezető, 24. Magyar Őslénytani Vándorgyűlés [24th Meeting of Hungarian Paleontologists. Programme, abstracts, field guide]. Nagyhuta, 2021 Szeptember 9–11. Hungarian Geological Society, Budapest, pp. 2627. [in Hungarian]Google Scholar
Sebe, K., Szentesi, Z., Pazonyi, P., Surányi, G., Csillag, G., 2021b. A late Pleistocene fossiliferous paleokarst site in the Western Mecsek Mts (Bükkösd, SW Hungary). Fragmenta Palaeontologica Hungarica 37, 127144.CrossRefGoogle Scholar
Shakun, J.D., Carlson, A.E., 2010. A global perspective on last glacial maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.CrossRefGoogle Scholar
Steup, R., Fuchs, M., 2017. The loess sequence at Münzenberg (Wetterau/Germany): a reinterpretation based on new luminescence dating results. Zeitshcrift für Geomorphologie Suppl. N.F. 61, 101120.CrossRefGoogle Scholar
Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Almond, P.C., Vandenberghe, J., Zhou, L., et al., 2018. New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 Ma: implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quaternary Science Reviews 191, 144166.CrossRefGoogle Scholar
Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Törőcsik, T., Almond, P.C., Smalley, I., et al., 2019. Periodicities of paleoclimate variations in the first high-resolution nonorbitally tuned grain size record of the past 1 Ma from SW Hungary and regional, global correlations. Aeolian Research 40, 7490.CrossRefGoogle Scholar
Sümegi, P., Gulyás, S., Molnár, D., Szilágyi, G., Sümegi, B.P., Törőcsik, T., Molnár, M., 2020. 14C dated chronology of the thickest and best resolved loess/paleosol record of the LGM from SE Hungary based on comparing precision and accuracy of age-depth models. Radiocarbon 62, 403417, https://doi.org/10.1017/RDC.2019.154.CrossRefGoogle Scholar
Sun, D., Shaw, J., An, Z., Cheng, M., Yue, L., 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters 25, 8588, https://doi.org/10.1029/97GL03353.CrossRefGoogle Scholar
Szujó, G.L., Sebe, K., Sipos, Gy., Pozsgai, E., 2017. Pleisztocén folyóvízi kavics a Villányi-hegységben [Pleistocene fluvial gravel in the Villány Hills]. Földtani Közlöny 147, 8598. https://doi.org/10.23928/foldt.kozl.2017.147.1.85. [in Hungarian]CrossRefGoogle Scholar
T. Biró, K., 1989. A madarasi lelőhely kőeszközeinek nyersanyagáról [On the raw material of the lithic tools of the site Madaras]. Cumania 11, 5962. [in Hungarian]Google Scholar
Terhorst, B., Thiel, C., Peticzka, R., Sprafke, T., Frechen, M., Fladerer, F.A., Roetzel, R., Neugebauer-Maresch, C., 2011. Casting new light on the chronology of the loess/paleosol sequences in Lower Austria. Quaternary Science Journal 60, 270277. https://doi.org/10.3285/eg.60.2-3.04.Google Scholar
Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria)—testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 2331.CrossRefGoogle Scholar
Thomsen, K.J., Jain, M., Murray, A.S., Denby, P.M., Roy, N., Bøtter-Jensen, L., 2008. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements 43, 752757.CrossRefGoogle Scholar
Újvári, G., Kovács, J., Varga, Gy., Raucsik, B., Marković, S.B., 2010. Dust flux estimates for the last glacial period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29, 31573166, https://doi.org/10.1016/j.quascirev.2010.07.005.CrossRefGoogle Scholar
Újvári, G., Varga, A., Raucsik, B., Kovács, J., 2014. The Paks loess–paleosol sequence: a record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quaternary International 319, 2237.CrossRefGoogle Scholar
Újvári, G., Molnár, M., Páll-Gergely, B., 2016. Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary. Quaternary Geochronology 35, 4353.CrossRefGoogle Scholar
Újvári, G., Stevens, T., Molnár, M., Demény, A., Lambert, F., Varga, Gy., Jull, A.J.T., Páll-Gergely, B., Buylaert, J-P., Kovács, J., 2017. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS, E10632E10638, www.pnas.org/cgi/doi/10.1073/pnas.1712651114.Google ScholarPubMed
Varga, A., Újvári, G., Raucsik, B., 2011. Tectonic versus climatic control on the evolution of a loess–paleosol sequence at Beremend, Hungary: an integrated approach based on paleoecological, clay mineralogical, and geochemical data. Quaternary International 240, 7186.CrossRefGoogle Scholar
Wacha, L., Frechen, M., 2011. The geochronology of the “Gorjanović loess section” in Vukovar, Croatia. Quaternary International 240, 8799.CrossRefGoogle Scholar
Wacha, L., Laag, C., Grizelj, A, Tsukamoto, S., Zeeden, C., Ivanišević, D., Rolf, C., Banak, A., Frechen, M., 2021. High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three glacial/interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 576, , https://doi.org/10.1016/j.palaeo.2021.110504.CrossRefGoogle Scholar
Zeeden, C., Hambach, U., Obreht, I., Hao, Q., Abels, H.A., Veres, D., Lehmkuhl, F., Gavrilov, M.B., Marković, S.B., 2018. Patterns and timing of loess–paleosol transitions in Eurasia: constraints for paleoclimate studies. Global and Planetary Change 162, 17.CrossRefGoogle Scholar