Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-26T00:51:15.376Z Has data issue: false hasContentIssue false

Pleistocene periglacial paleohydrology reconstituted from sandstone morphologies in the Paris Basin, France

Published online by Cambridge University Press:  22 April 2025

Médard Thiry*
Affiliation:
Centre de Géosciences, MINES Paris, Université PSL, Fontainebleau, France
Anthony Milnes
Affiliation:
Earth Sciences, School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, Australia
*
Corresponding author: Médard Thiry; Email: [email protected]

Abstract

A model for groundwater silicification within the Sables de Fontainebleau in sub-contemporary landscapes in the Paris Basin proposed 35 years ago has since been continuously and substantially updated, particularly with reference to new studies that relate silica precipitation to periglacial climate conditions. Herein we link the various distinctive morphologies of silicified sandstone bodies to the flow paths of groundwaters that imported the silica, the conditions under which it was precipitated, and the patterns of iced ground. The silicified masses are, in a way, fossil groundwater flow paths. The spatial arrangements of these paleo-groundwater flow paths suggest that permafrost developed to significant depth in parts of the Paris Basin. Our model visualizes a gradual settlement of periglacial conditions in the landscape starting with (1) cooling of the near-surface regolith and development of horizontal silicified pans; (2) progressive descent of impermeable permafrost as glacial conditions persisted, leading to non-horizontal flows ‘forced’ beneath the frozen layer; (3) thickening of the permafrost and consequent pressurization of groundwater in the phreatic zone when groundwater outflows to the valleys froze and closed, and convoluted silicified masses and possibly vertical dikes were formed; (4) followed by later thawing of the permafrost and a reduction in hydrostatic level due to climate warming leading to growth of geotropic silicified bodies when residual permafrost remained at depth. In this context, the distinctive morphologies of the silicified sand masses are proxies for the paleohydrology that prevailed during silicification and constitute a new toolbox for determining the depths reached by permafrost at time of silicification.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andersen, D.T., Pollard, W.H., McKay, C.P, Heldmann, J., 2002. Cold springs in permafrost on Earth and Mars. Journal of Geophysical Research 107, . https://doi.org/10.1029/2000JE001436.CrossRefGoogle Scholar
Bertran, P., Stadelmaier, K.H., Ludwig, P., 2022. Last Glacial Maximum active layer thickness in Western Europe, and the issue of ‘tundra gleys’ in loess sequences. Journal of Quaternary Science 37, 12221228. https://doi.org/10.1002/jqs.3434.Google Scholar
Bertran, P., Couchoud, I., Charlier, K., Hatté, C., Lefrais, Y., Limondin‐Lozouet, N., Queffelec, A., 2023. Last Glacial Maximum cryogenic calcite deposits in an alluvial fan at Villetoureix, southwest France. Permafrost and Periglacial Processes 34, 244258.Google Scholar
Boike, J., Roth, K., Overduin, P.P., 1998. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resources Research 34, 355363.CrossRefGoogle Scholar
Brückner, W.D., 1966. Origin of silcretes of Central Australia. Nature 209, 496497.CrossRefGoogle Scholar
Cholley, A., 1960. Remarques sur la structure et l’évolution morphologique du Bassin de Paris. Bulletin de l’Association des Géographes Français 7, 226.Google Scholar
Clark, I.D., Lauriol, B., Harwood, L., Marschner, M., 2001. Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada. Arctic, Antarctic and Alpine Research 33, 6269.CrossRefGoogle Scholar
Cojan, I., Brulhet, J., Corbonnois, J., Devos, A., Gargani, J., Harmand, D., Jaillet, S., et al., 2007. Morphologic evolution of eastern Paris Basin: “ancient surfaces” and Quaternary incisions. Mémoire Société Géologique de France 178, 135155.Google Scholar
Dobiński, W., 2012. Permafrost. The contemporary meaning of the term and its consequences. Bulletin of Geography, Physical Geography Series 5, 2942.Google Scholar
Dobiński, W., 2020. Permafrost active layer. Earth-Science Reviews 208, .CrossRefGoogle Scholar
Denizot, G., 1970. Notice Explicative, Carte Géologique France au 1/50 000, Feuille Fontainebleau (294). BRGM, Orléans, pp.Google Scholar
Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions. In: Berger, B.R., Bethke, P.M., Robertson, J.M. (Eds.), Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists, Littleton, Colorado. https://doi.org/10.5382/Rev.02.03.Google Scholar
Gibbard, P.L., Lewin, J., 2003. The history of the major rivers of southern Britain during the Tertiary. Journal of the Geological Society, London 160, 829845. https://doi.org/10.1144/0016-764902-137.CrossRefGoogle Scholar
Green, C.P., 1985. Pre-Quaternary weathering residues, sediments and landform development: examples from southern Britain. In: Richards, K.S., Arnett, R.R., Ellis, S. (Eds.), Geomorphology and Soils. George Allen & Unwin, London, pp. 5877.Google Scholar
Guillemin, C., 1978. Evolution de la “minéralogie des gens du monde.” Bulletin de Minéralogie 101, 124132.CrossRefGoogle Scholar
Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., Campbell, K.A., 2000. Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita 35, 4862.CrossRefGoogle Scholar
Jiraková, H., Huneau, F., Celle-Jeanton, H., Hrkal, Z., Le Coustumer, P., 2011. Insights into palaeorecharge conditions for European deep aquifers. Hydrogeology Journal 19, 15451562.CrossRefGoogle Scholar
Larue, J.-P., Etienne, R., 2002. Les Sables de Lozère et les Sables de Sologne: nouvelles interprétations de deux décharges détritiques du Miocène Inférieur, issues de la paléo-Loire (Bassin Parisien, France). Bulletin Société Géologique de France 173, 185192.CrossRefGoogle Scholar
Lemieux, J.M., Sudicky, E.A., Peltier, W.R., Tarasov, L., 2008. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. Journal of Geophysical Research: Earth Surface 113, . https://doi.org/10.1029/2007JF000838.CrossRefGoogle Scholar
Levasseur, G., Vrac, M., Roche, D.M., Paillard, D., Martin, A., Vandenberghe, J., 2011. Present and LGM permafrost from climate simulations: contribution of statistical downscaling. Climate of the Past 7, 12251246. https://doi.org/10.5194/cp-7-1225-2011.CrossRefGoogle Scholar
Lutaud, L., 1948. L’évolution morphologique du Bassin Tertiaire Parisien et le site de Paris. Bulletin Société Royale Belge de Géographie 72, 149187.Google Scholar
Matsuoka, N., 2001. Direct observation of frost wedging in alpine bedrock. Earth Surface Processes and Landforms 26, 601614. https://doi.org/10.1002/esp.208.CrossRefGoogle Scholar
Milnes, A.R., Twidale, C.R., 1983. An overview of silicification in Cainozoic landscapes of arid central and southern Australia. Australian Journal of Soil Research 21, 387410.Google Scholar
Murton, J., 2025. Ice wedges and related structures. In: Murton, J., Bradshaw, R., Pillans, B. (Eds.), Encyclopedia of Quaternary Science. 3rd Edit., vol. 5, p. 154202. https://doi.org/10.1016/B978-0-323-99931-1.00172-0.CrossRefGoogle Scholar
Richter, D.K., Schulte, U., Mangini, A., Erlemeyer, A., Erlemeyer, M., 2010. Mittel- und Oberpleistozäne Calcitpartikel kryogener Entstehung aus der Apostelhöhle südöstlich Brilon (Sauerland, NRW). Geologie und Paläontologie in Westfalen 78, 6171.Google Scholar
Summerfield, M.A., 1983. Silcrete as a palaeoclimatic indicator: evidence from southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 41, 6579.CrossRefGoogle Scholar
Thiry, M., 2017. Altération thermique des grès: croûtes indurées et réseaux polygonaux – (Buthiers, 77). Excursion ANVL du 05 Novembre 2017, livret guide, document pédagogique N° E 171105MTHI, Centre de Géosciences, École des Mines de Paris, Fontainebleau, France, p.Google Scholar
Thiry, M., Maréchal, B., 2001. Development of tightly cemented sandstone lenses within uncemented sand: example of the Fontainebleau Sand (Oligocene) in the Paris Basin. Journal of Sedimentary Research 71, 473483.Google Scholar
Thiry, M., Milnes, A., 2024a. Quaternary periglacial silicifications in the Paris Basin. BSGF - Earth Sciences Bulletin 195, . https://doi.org/10.1051/bsgf/2024008.CrossRefGoogle Scholar
Thiry, M., Milnes, A.R., 2024b. Paléohydrologies à l’origine des grès de Fontainebleau: restitution à partir de la morphologie des grès. Bulletin de l’Association des Naturalistes de la Vallée du Loing et du massif de Fontainebleau 102, 213.Google Scholar
Thiry, M., Panziera, J.-P., Schmitt, J.-M., 1984. Silicification et désilicification des grès et des sables de Fontainebleau. Evolutions morphologiques des grès dans les sables et à l’affleurement. Bulletin d’Information des Géologues du Bassin de Paris 21, 2332.Google Scholar
Thiry, M., Bertrand-Ayrault, M., Grisoni, J.-C., 1988. Ground-water silicification and leaching in sands: example of the Fontainebleau Sand (Oligocene) in the Paris Basin. Geological Society America Bulletin 100, 12831290.2.3.CO;2>CrossRefGoogle Scholar
Thiry, M., van Oort, F., Thiesson, J., van Vliet-Lanoë, B., 2013. Periglacial morphogenesis in the Paris Basin: insight from geophysical survey and consequences for the fate of soil pollution. Geomorphology 197, 3444.CrossRefGoogle Scholar
Thiry, M., Millot, R., Innocent, C., Franke, C., 2015. The Fontainebleau Sandstone: Bleaching, Silicification and Calcite Precipitation under Periglacial Conditions. Field trip guide, AIG‐11, Applied Isotope Geochemistry Conference, September 21–25, 2015, Orléans, France, p.Google Scholar
Thiry, M., Liron, M.N., Dubreucq, P., Polton, J.-C., 2017. Curiosités Géologiques du Massif de Fontainebleau. Guide Géologique, BRGM Editions, p.Google Scholar
Thiry, M., Innocent, C., Girard, J.-P., Milnes, A.R., Franke, C., Guillon, S., 2020. Sand calcites as a key to Pleistocene periglacial landscapes. Quaternary Research 101, 225244.Google Scholar
Thiry, M., Milnes, AR., Grimaud, J.-L., 2024. Periglacial paleohydrologies reconstituted from sandstone morphologies; Field Trip to Sand pit Bois de l’Abbesse at Treuzy-Levelay. Astro Geo Workshop, Thursday, April 11 , 2024, p.Google Scholar
Töchterle, P., Baldo, A., Murton, J.B., Schenk, F., Edwards, R.L., Koltai, G., Moseley, G.E., 2024. Reconstructing Younger Dryas ground temperature and snow thickness from cave deposits. Climate of the Past 2023, 15211535. https://doi.org/10.5194/cp-20-1521-2024.CrossRefGoogle Scholar
Vandenberghe, J., French, H.M., Gorbunov, A., Marchenko, S., Velichko, A.A., Jin, H., Cui, Z., Zhang, T., Wan, X., 2014. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43, 652666.CrossRefGoogle Scholar
van Vliet-Lanoë, B., Lisitsyna, O., 2001. Permafrost extent at the last glacial maximum and at the Holocene optimum. The Climex map. In: Paepe, R., Melnikov, V. (Eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Springer Netherlands, Dordrecht, pp. 215225.CrossRefGoogle Scholar
Walvoord, M.A., Kurylyk, B.L., 2016. Hydrologic impacts of thawing permafrost – a review. Vadose Zone Journal 15, vzj2016-01. https://doi.org/10.2136/vzj2016.01.0010.CrossRefGoogle Scholar
Whiteman, C.A., 2024. Periglacial landforms and landscape development in southern England. Proceedings of the Geologists’ Association 136, . https://doi.org/10.1016/j.pgeola.2024.04.006.CrossRefGoogle Scholar
Yoshikawa, K., Kane, D.L., 2021. Permafrost features and Talik geometry in hydrologic system. In: Yang, D., D.L, Kane. (Eds.), Arctic Hydrology, Permafrost and Ecosystems, Springer, Cham, pp. 409440. https://doi.org/10.1007/978-3-030-50930-9_14.CrossRefGoogle Scholar
Žák, K., Urban, J., Cilek, V., Hercman, H., 2004. Cryogenic cave calcite from several Central European caves; age, carbon and oxygen isotopes and a genetic model. Chemical Geology 206, CrossRefGoogle Scholar
Žák, K., Richter, D.K., Filippi, M., Zivor, R., Deininger, M., Mangini, A., Scholz, D., 2012. Cryogenic cave carbonate—a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Climate of the Past 8, 18211837. https://doi.org/10.5194/cp-8-1821-2012.CrossRefGoogle Scholar
Supplementary material: File

Thiry and Milnes supplementary material

Thiry and Milnes supplementary material
Download Thiry and Milnes supplementary material(File)
File 118.8 KB