Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-26T02:53:38.870Z Has data issue: false hasContentIssue false

A new paleoclimate perspective shows that arid regions will be drier under global warming conditions

Published online by Cambridge University Press:  22 April 2025

Yu Li*
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
Simin Peng
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China Key Laboratory of Poyang Lake Wetland and Watershed Research (Ministry of Education), School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
Zhansen Zhang
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
Junjie Duan
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
*
Corresponding author: Yu Li; Email: [email protected]

Abstract

Studies on the evolution of characteristics and dynamic mechanisms of dry/wet status in global arid regions are contradictory. We systematically assessed the evolution and drivers of dry/wet status in global arid regions from a paleoclimate perspective using observational datasets, paleoclimate records, and climate model simulations from Paleoclimate Model Intercomparison Project Phase 4 (PMIP4)-Coupled Model Intercomparison Project Phase 6 (CMIP6) and PMIP3-CMIP5. Our results show that climate change during the last glacial maximum (LGM) provides a reverse analog for the near-future climate in global arid regions. The notable migration of the subtropical high during the LGM profoundly altered the atmospheric circulation and influenced dry/wet status in global arid regions. The multimodel ensembles project that under the shared socioeconomic pathway (SSP) 8.5 scenario, nonuniform heating induced by polar-amplified warming will introduce northward migration of the subtropical high. The resulting reduction in subtropical precipitation will lead to expansion of global arid regions under global warming, which is consistent with previous studies based on atmospheric aridity.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., et al., 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895899.CrossRefGoogle ScholarPubMed
Allen, R.J., Sherwood, S.C., Norris, J.R., Zender, C.S., 2012. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485, 350354.CrossRefGoogle Scholar
Bao, Y., Song, Z., Qiao, F., 2020. FIO‐ESM version 2.0: Model description and evaluation. Journal of Geophysical Research: Oceans 125, e2019JC016036. https://doi.org/10.1029/2019JC016036CrossRefGoogle Scholar
Bacon, S.N., Burke, R.M., Pezzopane, S.K., Jayko, A.S., 2006. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA. Quaternary Science Reviews 25, 12641282.CrossRefGoogle Scholar
Barker, P., Williamson, D., Gasse, F., Gibert, E., 2003. Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quaternary Research 60, 368376.CrossRefGoogle Scholar
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M-A., Meurdesoif, Y., et al., 2019. IPCC DDC: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation, unpaged. https://doi.org/10.22033/ESGF/CMIP6.5271Google Scholar
Briegleb, B.P., Bitz, C.M., Hunke, E.C., Lioscomb, W.H., Holland, M.M., Schramm, J.L., Moritz, R.E., 2004. Scientific description of the sea ice component in the community climate system model, version 3. NCAR Technical Note 463, Boulder, Colorado, National Center for Atmospheric Research, 73 p.Google Scholar
Caballero, M., Ortega, B., Valadez, F., Metcalfe, S., Macias, J.L., Sugiura, Y., 2002. Sta. Cruz Atizapán: a 22-ka lake level record and climatic implications for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 217235.CrossRefGoogle Scholar
Cao, J., Wang, B., Liu, J., 2019. Attribution of the last glacial maximum climate formation. Climate Dynamics 53, 16611679.CrossRefGoogle Scholar
Chen, S., Wei, K., Chen, W., Song, L., 2014. Regional changes in the annual mean Hadley circulation in recent decades. Journal of Geophysical Research: Atmospheres 119, 78157832.CrossRefGoogle Scholar
Chen, X., Zhou, T., 2015. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophysical Research Letters 42, 94339439.CrossRefGoogle Scholar
Cherchi, A., Ambrizzi, T., Behera, S., Freitas, A.C.V., Morioka, Y., Zhou, T., 2018. The response of subtropical highs to climate change. Current Climate Change Reports 4, 371382.CrossRefGoogle Scholar
Cherchi, A., Fogli, P.G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., et al., 2019. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. Journal of Advances in Modeling Earth Systems 11, 185209.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Cooper, V.T., Armour, K.C., Hakim, G.J., Tierney, J.E., Osman, M.B., Proistosescu, C., Dong, Y., et al., 2024. Last glacial maximum pattern effects reduce climate sensitivity estimates. Science Advances 10, eadk9461. https://doi.org/10.1126/sciadv.adk9461CrossRefGoogle ScholarPubMed
Danabasoglu, G., Lamarque, J.F., Bacmeister, J., Bailey, D.A., DuVivier, A.K., Edwards, J., Emmons, L.K., et al., 2020. The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems 12, e2019MS001916. https://doi.org/10.1029/2019MS001916CrossRefGoogle Scholar
Davis, B.A., Brewer, S., 2009. Orbital forcing and role of the latitudinal insolation/temperature gradient. Climate Dynamics 32, 143165.CrossRefGoogle Scholar
Dean, W.E., Bradbury, J.P., Anderson, R.Y., Barnosky, C.W., 1984. The variability of Holocene climate change: evidence from varved lake sediments. Science 226, 11911194.CrossRefGoogle ScholarPubMed
D’Odorico, P., Porporato, A., Runyan, C.W., 2019. Dryland Ecohydrology, 2nd ed., Springer Nature, Cham, Switzerland. 602 p.CrossRefGoogle Scholar
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9, 19371958.CrossRefGoogle Scholar
Feng, S., Fu, Q., 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics 13, 1008110094.CrossRefGoogle Scholar
Foerster, V., Junginger, A., Langkamp, O., Gebru, T., Asrat, A., Umer, M., Lamb, H.F., et al., 2012. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quaternary International 274, 2537.CrossRefGoogle Scholar
Fogli, P.G., Iovino, D., 2014. CMCC-CESM-NEMO: Toward the new CMCC Earth system model. Centro EuroMediterraneo sui Cambiamenti Climatici (CMCC) Research Paper RP0248. https://www.cmcc.it/wp-content/uploads/2015/02/rp0248-ans-12-2014.pdfCrossRefGoogle Scholar
Francis, J.A., Vavrus, S.J., 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters 10, 014005. https://doi.org/10.1088/1748-9326/10/1/014005CrossRefGoogle Scholar
Frierson, D.M.W., Lu, J., Chen, G., 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophysical Research Letters 34, L18804. https://doi.org/10.1029/2007GL031115CrossRefGoogle Scholar
Fu, Q., Johanson, C.M., Wallace, J.M., Reichler, T., 2006. Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312, 1179.CrossRefGoogle ScholarPubMed
Gasse, F., Van Campo, E., 2001. Late Quaternary environmental changes from a pollen and diatom record in the southern tropics (Lake Tritrivakely, Madagascar). Palaeogeography, Palaeoclimatology, Palaeoecology 167, 287308.CrossRefGoogle Scholar
Grise, K.M., Davis, S.M., 2020. Hadley cell expansion in CMIP6 models. Atmospheric Chemistry and Physics 20, 52495268.CrossRefGoogle Scholar
Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., et al., 2011. The Community Climate System Model Version 4. Journal of Climate 24, 49734991.CrossRefGoogle Scholar
Habeck-Fardy, A., Nanson, G.C., 2014. Environmental character and history of the Lake Eyre Basin, one seventh of the Australian continent. Earth-Science Reviews 132, 3966.CrossRefGoogle Scholar
Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3CrossRefGoogle ScholarPubMed
He, B., Yu, Y., Bao, Q., Lin, P., Liu, H., Li, J., Wang, L., et al., 2020. CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmospheric and Oceanic Science Letters 13, 582588.CrossRefGoogle Scholar
Heinecke, L., Mischke, S., Adler, K., Barth, A., Biskaborn, B.K., Plessen, B., Nitze, I., Kuhn, G., Rajabov, I., Herzschuh, U., 2017. Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ∼29 cal ka. Journal of Paleolimnology 58, 317334.CrossRefGoogle Scholar
Held, I.M., Soden, B.J., 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate 19, 56865699.CrossRefGoogle Scholar
Hillyer, R., Valencia, B.G., Bush, M.B., Silman, M.R., Steinitz-Kannan, M., 2009. A 24,700-yr paleolimnological history from the Peruvian Andes. Quaternary Research 71, 7182.CrossRefGoogle Scholar
Hodell, D.A., Brenner, M., Kanfoush, S.L., Curtis, J.H., Stoner, J.S., Song, X.L., Yuan, W., Whitmore, T.J., 1999. Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quaternary Research 52, 369380.CrossRefGoogle Scholar
Holmgren, K., Lee-Thorp, J.A., Cooper, G.R.J., Lundblad, K., Partridge, T.C., Scott, L., Sithaldeen, R., Talma, A.S., Tyson, P.D., 2003. Persistent millennial-scale climatic variability over the past 25,000 years in southern Africa. Quaternary Science Reviews 22, 23112326.CrossRefGoogle Scholar
Hostetler, S.W., Bartlein, P.J., 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resource Research 26, 26032612.Google Scholar
Hu, Y., Fu, Q., 2007. Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics 7, 52295236.CrossRefGoogle Scholar
Hu, Y., Tao, L., Liu, J., 2013. Poleward expansion of the Hadley circulation in CMIP5 simulations. Advances in Atmospheric Sciences 30, 790795.CrossRefGoogle Scholar
Huang, M.-T., Zhai, P.-M., 2023. Desertification dynamics in China’s drylands under climate change. Advances in Climate Change Research 14, 429436.CrossRefGoogle Scholar
Hulme, M., 1996. Recent climatic change in the world’s drylands. Geophysical Research Letters 23, 6164.CrossRefGoogle Scholar
Ibarra, D.E., Egger, A.E., Weaver, K.L., Harris, C.R., Maher, K., 2014. Rise and fall of late Pleistocene pluvial lakes in response to reduced evaporation and precipitation: Evidence from Lake Surprise, California. Geological Society of America Bulletin 126, 13871415.CrossRefGoogle Scholar
Jackson, C.S., Broccoli, A.J., 2003. Orbital forcing of Arctic climate: mechanisms of climate response and implications for continental glaciation. Climate Dynamics 21, 539557.CrossRefGoogle Scholar
Ju, L., Wang, H., Jiang, D., 2007. Simulation of the last glacial maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 376390.CrossRefGoogle Scholar
Lambert, S.J., Boer, G.J., 2001. CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics 17, 83106.CrossRefGoogle Scholar
Lee, W.-L., Wang, Y.-C., Shiu, C.L., Tsai, I.-C., Tu, C.-Y., Lan, Y.-Y, Chen, J.-P., Pan, H.-L., Hsu, H.-H., 2020. Taiwan Earth System Model Version 1: description and evaluation of mean state. Geoscientific Model Development 13, 38873904.CrossRefGoogle Scholar
Li, G., Harrison, S.P., Bartlein, P.J., Izumi, K., Colin Prentice, I., 2013. Precipitation scaling with temperature in warm and cold climates: an analysis of CMIP5 simulations. Geophysical Research Letters 40, 40184024.CrossRefGoogle Scholar
Li, W., Li, L., Ting, M., Liu, Y., 2012. Intensification of Northern Hemisphere subtropical highs in a warming climate. Nature Geoscience 5, 830834.CrossRefGoogle Scholar
Li, Y., Morrill, C., 2010. Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments. Climate Dynamics 35, 11191132.CrossRefGoogle Scholar
Li, Y., Morrill, C., 2013. Lake levels in Asia at the last glacial maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quaternary Science Reviews 60, 112.CrossRefGoogle Scholar
Li, Y., Peng, S., Liu, H., Zhang, X., Ye, W., Han, Q., Zhang, Y., Xu, L., Li, Y., 2020. Westerly jet stream controlled climate change mode since the last glacial maximum in the northern Qinghai-Tibet Plateau. Earth and Planetary Science Letters 549, 116529. https://doi.org/10.1016/j.epsl.2020.116529CrossRefGoogle Scholar
Li, Z.C., Sun, W.B., Liang, C.X., Xing, X.H., Li, Q.X., 2023. Arctic warming trends and their uncertainties based on surface temperature reconstruction under different sea ice extent scenarios. Advances in Climate Change Research 14, 335346.CrossRefGoogle Scholar
Lohmann, G., Butzin, M., Eissner, N., Shi, X., Stepanek, C., 2020. Abrupt climate and weather changes across timescales. Paleoceanography and Paleoclimatology 35, e2019PA003782. https://doi.org/10.1029/2019PA003782CrossRefGoogle Scholar
Lovato, T., Peano, D., Butenschön, M., Materia, S., Iovino, D., Scoccimarro, E., Fogli, P.G., et al., 2022. CMIP6 simulations with the CMCC Earth System Model (CMCC‐ESM2). Journal of Advances in Modeling Earth Systems 14, e2021MS002814. https://doi.org/10.1029/2021MS002814CrossRefGoogle Scholar
Lowry, D.P., Morrill, C., 2019. Is the last glacial maximum a reverse analog for future hydroclimate changes in the Americas? Climate Dynamics 52, 44074427.CrossRefGoogle Scholar
Lu, H., Yi, S., Liu, Z., Mason, J.A., Jiang, D., Cheng, J., Stevens, T., et al., 2013. Variation of East Asian monsoon precipitation during the past 21 ky and potential CO2 forcing. Geology 41, 10231026.CrossRefGoogle Scholar
Lu, J., Vecchi, G.A., Reichler, T., 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters 34, L06805. https://doi.org/10.1029/2006GL028443Google Scholar
Lyle, M., Heusser, L., Ravelo, C., Yamamoto, M., Barron, J., Diffenbaugh, N.S., Herbert, T., Andreasen, D., 2012. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States. Science 337, 16291633.CrossRefGoogle ScholarPubMed
Izumi, K., Bartlein, P.J., Harrison, S.P., 2013. Consistent large-scale temperature responses in warm and cold climates. Geophysical Research Letters 40, 18171823.CrossRefGoogle Scholar
Man, M.L., Zheng, Z., Li, J., Wang, M.Y., 2016. Carbon isotope compositions and climate changes of the past 20,000 years inferred from a mountainous peat bog of northern Guangxi[in Chinese with an English abstract]. Tropical Geography 36, 468476.Google Scholar
Martin, G.M., Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., Hinton, T.J., et al., 2011. The HadGEM2 family of met office unified model climate configurations. Geoscientific Model Development 4, 723757.Google Scholar
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., 2019. Developments in the MPI‐M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems 11, 9981038.CrossRefGoogle Scholar
Metcalfe, S., Say, A., Black, S., McCulloch, R., O’Hara, S., 2002. Wet conditions during the last glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico. Quaternary Research 57, 91101.CrossRefGoogle Scholar
Middleton, N.J., Thomas, D.S.G., UNEP [United Nations Environmental Programme] (Eds.), 1992. World Atlas of Desertification. Edward Arnold, London.Google Scholar
Mortimore, M., 2009. Dryland Opportunities: A new paradigm for people, ecosystems and development. IUCN, Gland, Switzerland; HED, London, U.K.; and UNDP, New York, U.S.A.Google Scholar
Murakami, T., Katsuta, N., Yamamoto, K., Takamatsu, N., Takano, M., Oda, T., Matsumoto, G.I., Horiuchi, K., Kawai, T., 2010. A 27-kyr record of environmental change in central Asia inferred from the sediment record of Lake Hovsgol, northwest Mongolia. Journal of Paleolimnology 43, 369383.CrossRefGoogle Scholar
Nguyen, H., Evans, A., Lucas, C., Smith, I., Timbal, B., 2013. The Hadley circulation in reanalyses: climatology, variability, and change. Journal of Climate 26, 33573376.CrossRefGoogle Scholar
Nguyen, H., Lucas, C., Evans, A., Timbal, B., Hanson, L., 2015. Expansion of the Southern Hemisphere Hadley cell in response to greenhouse gas forcing. Journal of Climate 28, 80678077.CrossRefGoogle Scholar
Öğretmen, N., 2012. Paleoenvironmental Changes in Lake Van During the Last Glacial-Holocene. Master’s Thesis, Istanbul Technical University, Istanbul, Turkey.Google Scholar
Ojima, D.S., Dirks, B.O.M., Glenn, E.P., Owensby, C.E., Scurlock, J.O., 1993. Assessment of C budget for grasslands and drylands of the world. Water, Air, and Soil Pollution 70, 95109.CrossRefGoogle Scholar
O’Neill, B.C., Tebaldi, C., van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., et al., 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9, 34613482.CrossRefGoogle Scholar
Orr, A., Bracegirdle, T.J., Hosking, J.S., Feng, W., Roscoe, H.K., Haigh, J.D., 2012. Strong dynamical modulation of the cooling of the polar stratosphere associated with the Antarctic ozone hole. Journal of Climate 26, 662668.CrossRefGoogle Scholar
Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W., 2011. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. Journal of Climate 24, 795812.CrossRefGoogle Scholar
Raddatz, T.J., Reick, C.H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.-G., Wetzel, P., Jungclaus, J., 2007. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dynamics 29, 565574.CrossRefGoogle Scholar
Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P.J., Downing, T.E., et al., 2007. Global desertification: building a science for dryland development. Science 316, 847851.CrossRefGoogle ScholarPubMed
Rodriguez Solis, J.L., Turrent, C., Gross, M., 2022. Regional responses of the Northern Hemisphere subtropical jet stream to reduced Arctic sea ice extent. Climate 10, 108. https://doi.org/10.3390/cli10070108CrossRefGoogle Scholar
Routson, C.C., McKay, N.P., Kaufman, D.S., Erb, M.P., Goosse, H., Shuman, B.N., Rodysill, J.R., Ault, T., 2019. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 8387.CrossRefGoogle ScholarPubMed
Rowe, H.D., Dunbar, R.B., Mucciarone, D.A., Seltzer, G.O., Baker, P.A., Fritz, S., 2002. Insolation, moisture balance and climate change on the South American Altiplano since the last glacial maximum. Climatic Change 52, 175199.CrossRefGoogle Scholar
Salzmann, M., 2016. Global warming without global mean precipitation increase? Science Advances, 2, e1501572. https://doi.org/10.1126/sciadv.1501572CrossRefGoogle ScholarPubMed
Scheff, J., Frierson, D., 2012. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. Journal of Climate 5, 43304347.CrossRefGoogle Scholar
Schmidt, G.A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G.L., Aleinov, I., Bauer, M., et al., 2014. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems 6, 141184.CrossRefGoogle Scholar
Seager, R., Murtugudde, R., Naik, N., Clement, A., Gordon, N., Miller, J., 2003. Air-sea interaction and the seasonal cycle of the subtropical anticyclones. Journal of Climate 16, 19481966.2.0.CO;2>CrossRefGoogle Scholar
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.P., et al., 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 11811184.CrossRefGoogle ScholarPubMed
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L.S., Debernard, J.B., et al., 2020. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development 13, 61656200.CrossRefGoogle Scholar
Semmler, T., Stulic, L., Jung, T., Tilinina, N., Campos, C., Gulev, S., Koracin, D., 2016. Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations. Journal of Climate 29, 58935913.CrossRefGoogle Scholar
Shaw, T.A., Baldwin, M., Barnes, E.A., Caballero, R., Garfinkel, C.I., Hwang, Y.T., Li, C., et al., 2016. Storm track processes and the opposing influences of climate change. Nature Geoscience 9, 656664.CrossRefGoogle Scholar
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., et al., 2013. Atmospheric component of the MPI-M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems 5, 146172.CrossRefGoogle Scholar
Stuut, J.B.W., Lamy, F., 2004. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research 62, 301309.CrossRefGoogle Scholar
Smith, W.K., Dannenberg, M.P., Yan, D., Herrmann, S., Barnes, M.L., Barron-Gafford, G.A., Biederman, J.A., et al., 2019. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sensing of Environment 233, 111401. https://doi.org/10.1016/j.rse.2019.111401CrossRefGoogle Scholar
Son, S.W., Lee, S., 2005. The response of westerly jets to thermal driving in a primitive equation model. Journal of the Atmospheric Sciences 62, 37413757.CrossRefGoogle Scholar
Son, S.W., Kim, S.Y., Min, S.K., 2018. Widening of the Hadley cell from last glacial maximum to future climate. Journal of Climate 31, 267281.CrossRefGoogle Scholar
Staten, P.W., Reichler, T., Lu, J., 2014. The transient circulation response to radiative forcings and sea surface warming. Journal of Climate 27, 93239336.CrossRefGoogle Scholar
Sun, A., Feng, Z., Ran, M., and Zhang, C., 2013. Pollen-recorded bioclimatic variations of the last ∼22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau. Quaternary International 311, 3643.CrossRefGoogle Scholar
Sun, H., Liu, X., 2021. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions. Climate Dynamics 56, 23392358.CrossRefGoogle Scholar
Sun, L., Chen, G., Lu, J., 2013. Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. Journal of the Atmospheric Sciences 70, 24872504.CrossRefGoogle Scholar
Swart, N.C., Cole, J.N.S., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P., Anstey, J., et al., 2019. The Canadian Earth System Model Version 5 (CanESM5.0.3). Geoscientific Model Development 12, 48234873.CrossRefGoogle Scholar
Thompson, D.W.J., Solomon, S., Kushner, P.J., England, M.H., Grise, K.M., Karoly, D.J., 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4, 741749.CrossRefGoogle Scholar
Tiercelin, J.J., Gibert, E., Umer, M., Bonnefille, R., Disnar, J.R., Lézine, A.M., Hureau-Mazaudier, D., Travi, Y., Keravis, D., Lamb, H.F., 2008. High-resolution sedimentary record of the last deglaciation from a high-altitude lake in Ethiopia. Quaternary Science Reviews 27, 449467.CrossRefGoogle Scholar
Tierney, J.E., Poulsen, C.J., Montañez, I.P., Bhattacharya, T., Feng, R., Ford, H.L., Hönisch, B., et al., 2020. Past climates inform our future. Science 370, eaay3701. https://doi.org/10.1126/science.aay3701CrossRefGoogle ScholarPubMed
Turney, C.S.M., Bird, M.I., Roberts, R.G., 2001. Elemental δ13C at Allen’s Cave, Nullarbor Plain, Australia: assessing post‐depositional disturbance and reconstructing past environments. Journal of Quaternary Science 16, 779784.CrossRefGoogle Scholar
Valero-Garcés, B.L., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S.J., Veit, H., Moreno, A., 2005. Palaeohydrology of Laguna de Tagua (34°30’S) and moisture fluctuations in central Chile for the last 46 000 yr. Journal of Quaternary Science 20, 625641.CrossRefGoogle Scholar
Vélez, M.I., Hooghiemstra, H., Metcalfe, S., Martínez, I., Mommersteeg, H., 2003. Pollen- and diatom based environmental history since the last glacial maximum from the Andean core Fúquene-7, Colombia. Journal of Quaternary Science 18, 1730.CrossRefGoogle Scholar
Volodin, E.M., Dianskii, N.A., Gusev, A.V., 2010. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya, Atmospheric and Oceanic Physics 46, 414431.CrossRefGoogle Scholar
Volodin, E.M., Mortikov, E., Kostrykin, S., Galin, V., Lykossov, V.N., Gritsun, A., Diansky, N., et al., 2018. Simulation of the modern climate with the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling 33, 367374.CrossRefGoogle Scholar
Voldoire, A., Sanchez-Gomez, E.,Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., et al., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics 40, 20912121.CrossRefGoogle Scholar
Wang, B., Xiang, B., Lee, J.Y., 2013. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences 110, 27182722.Google Scholar
Wang, R.L., Scarpitta, S.C., Zhang, S.C., Zheng, M.P., 2002. Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters 203, 461477.CrossRefGoogle Scholar
Watt-Meyer, O., Frierson, D.M., 2019. ITCZ width controls on Hadley cell extent and eddy-driven jet position and their response to warming. Journal of Climate 32, 11511166.CrossRefGoogle Scholar
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., et al., 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4, 845872.CrossRefGoogle Scholar
Wehrli, K., Guillod, B.P., Hauser, M., Leclair, M., Seneviratne, S.I., 2018. Assessing the dynamic versus thermodynamic origin of climate model biases. Geophysical Research Letters 45, 84718479.Google ScholarPubMed
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.CrossRefGoogle Scholar
Wischnewski, J., Mischke, S., Wang, Y., Herzschuh, U., 2011. Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial–a multi-proxy, dual-site approach comparing terrestrial and aquatic signals. Quaternary Science Reviews 30, 8297.CrossRefGoogle Scholar
Wu, D., Ma, X., Yuan, Z., Hillman, A.L., Zhang, J., Chen, J., Zhou, A., 2022. Holocene hydroclimatic variations on the Tibetan Plateau: an isotopic perspective. Earth-Science Reviews 233, 104169. https://doi.org/10.1016/j.earscirev.2022.104169CrossRefGoogle Scholar
Wu, H.N., Ma, Y.Z., Feng, Z.D., Sun, A.Z., Zhang, C.J., Li, F., Kuang, J., 2009. A high resolution record of vegetation and environmental variation through the last ∼25,000 years in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 191199.Google Scholar
Wu, T.W., Lu, Y.X., Fang, Y.J., Xin, X.G., Li, L., Li, W.P., Jie, W.H., et al., 2019. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development 12, 15731600.CrossRefGoogle Scholar
Wu, Y.T., Smith, K.L., 2016. Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. Journal of Climate 29, 20412058.CrossRefGoogle Scholar
Yan, D., Wünnemann, B., 2014. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quaternary Science Reviews 95, 95114.CrossRefGoogle Scholar
Yan, X.Y., Zhang, Q., Yan, X.M., Wang, S., Ren, X.Y., Zhao, F.N., 2019. An overview of distribution characteristics and formation mechanisms in global arid areas. [in Chinese with English abstract] Advances in Earth Science 34, 826841.Google Scholar
Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., Liu, J., 2016. Intensification and poleward shift of subtropical western boundary currents in a warming climate. Journal of Geophysical Research: Oceans 121, 49284945.CrossRefGoogle Scholar
Yang, H., Lohmann, G., Krebs‐Kanzow, U., Ionita, M., Shi, X., Sidorenko, D., Gong, X., Chen, X., Gowan, E.J., 2020. Poleward shift of the major ocean gyres detected in a warming climate. Geophysical Research Letters 47, e2019GL085868. https://doi.org/10.1029/2019GL085868Google Scholar
Yang, H., Lu, J., Wang, Q., Shi, X., Lohmann, G., 2022. Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Climate Dynamics 58, 35133526.CrossRefGoogle Scholar
Yang, H., Lohmann, G., Shi, X., Müller, J., 2023. Evaluating the mechanism of tropical expansion using idealized numerical experiments. Ocean-Land-Atmosphere Research 2, 0004. https://doi.org/10.34133/olar.0004 CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., de Deckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the last glacial maximum from observed sea-level minima. Nature 406, 713716.CrossRefGoogle ScholarPubMed
Yu, G., Xue, B., Wang, S., Liu, J., 2000. Lake records and LGM climate in China. [in Chinese] Chinese Science Bulletin 45, 11581164.CrossRefGoogle Scholar
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., et al., 2012. A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. Journal of the Meteorological Society of Japan Series II 90A, 2364.Google Scholar
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., et al., 2019. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan, Series II 97, 931965.CrossRefGoogle Scholar
Zhang, X., Li, Y., Ye, W., Peng, S., Zhang, Y., Liu, H., Li, Y., Han, Q., Xu, L., 2020. Wet–dry status change in global closed basins between the mid-Holocene and the last glacial maximum and its implication for future projection. Climate of the Past 16, 19871998.CrossRefGoogle Scholar
Zhao, L.Y., Lu, H.Y., Zhang, E.L., Wang, X.Y., Yi, S.W., Chen, Y.Y., Zhang, H.Y., Bo, W., 2015. Lake-level and paleoenvironment variations in Yitang Lake (northwestern China) during the past 23ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments. [in Chinese with English abstract] Quaternary Sciences 35, 172179.Google Scholar
Zhou, T., Yu, R., Zhang, J., Drange, H., Cassou, C., Deser, C., Hodson, D.L.R., et al., 2009. Why the western Pacific subtropical high has extended westward since the late 1970s. Journal of Climate 22, 21992215.CrossRefGoogle Scholar
Zhou, W., Xie, S.P., Yang, D., 2019. Enhanced equatorial warming causes deep-tropical contraction and subtropical monsoon shift. Nature Climate Change 9, 834839.CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material
Download Li et al. supplementary material(File)
File 6.9 MB