No CrossRef data available.
Published online by Cambridge University Press: 22 April 2025
Studies on the evolution of characteristics and dynamic mechanisms of dry/wet status in global arid regions are contradictory. We systematically assessed the evolution and drivers of dry/wet status in global arid regions from a paleoclimate perspective using observational datasets, paleoclimate records, and climate model simulations from Paleoclimate Model Intercomparison Project Phase 4 (PMIP4)-Coupled Model Intercomparison Project Phase 6 (CMIP6) and PMIP3-CMIP5. Our results show that climate change during the last glacial maximum (LGM) provides a reverse analog for the near-future climate in global arid regions. The notable migration of the subtropical high during the LGM profoundly altered the atmospheric circulation and influenced dry/wet status in global arid regions. The multimodel ensembles project that under the shared socioeconomic pathway (SSP) 8.5 scenario, nonuniform heating induced by polar-amplified warming will introduce northward migration of the subtropical high. The resulting reduction in subtropical precipitation will lead to expansion of global arid regions under global warming, which is consistent with previous studies based on atmospheric aridity.