Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-05-02T08:58:15.708Z Has data issue: false hasContentIssue false

Strategy for mitigation of systematics for EoR experiments with the Murchison Widefield Array

Published online by Cambridge University Press:  04 December 2024

Chuneeta D. Nunhokee*
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Dev Null
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Cathryn Trott
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Christopher Jordan
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Jack Laurence Bramble Line
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Randall Bruce Wayth
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
Nichole Barry
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, Australia Curtin Institute of Radio Astronomy, Perth, WA, Australia
*
Corresponding author: Chuneeta D. Nunhokee, Email: [email protected]

Abstract

Observations of the 21 cm signal face significant challenges due to bright astrophysical foregrounds that are several orders of magnitude higher than the brightness of the hydrogen line, along with various systematics. Successful 21 cm experiments require accurate calibration and foreground mitigation. Errors introduced during the calibration process such as systematics can disrupt the intrinsic frequency smoothness of the foregrounds, leading to power leakage into the Epoch of Reionisation window. Therefore, it is essential to develop strategies to effectively address these challenges. In this work, we adopt a stringent approach to identify and address suspected systematics, including malfunctioning antennas, frequency channels corrupted by radio frequency interference, and other dominant effects. We implement a statistical framework that utilises various data products from the data processing pipeline to derive specific criteria and filters. These criteria and filters are applied at intermediate stages to mitigate systematic propagation from the early stages of data processing. Our analysis focuses on observations from the Murchison Widefield Array Phase I configuration. Out of the observations processed by the pipeline, our approach selects 18%, totalling 58 h, that exhibit fewer systematic effects. The successful selection of observations with reduced systematic dominance enhances our confidence in achieving 21 cm measurements.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdurashidova, Z., et al. 2022, ApJ, 924, 51. https://doi.org/10.3847/1538-4357/ac2ffc. arXiv: 2108.07282 [astro-ph.CO].CrossRefGoogle Scholar
Barry, N., Hazelton, B., Sullivan, I., Morales, M. F., & Pober, J. C. 2016, MNRAS, 461, 3135. https://doi.org/10.1093/mnras/stw1380. arXiv: 1603.00607 [astro-ph.IM].CrossRefGoogle Scholar
Barry, N., Line, J. L. B., Lynch, C. R., Kriele, M., & Cook, J. 2023, https://doi.org/10.48550/arXiv.2312.07506 CrossRefGoogle Scholar
Barry, N., et al. 2019, ApJ, 884, 1. https://doi.org/10.3847/1538-4357/ab40a8. arXiv: 1909.00561 [astro-ph.IM].CrossRefGoogle Scholar
Beardsley, A. P., et al. 2016, ApJ, 833, 102. https://doi.org/10.3847/1538-4357/833/1/102. arXiv: 1608.06281 [astro-ph.IM].CrossRefGoogle Scholar
Berkhout, L. M., et al. 2024, https://doi.org/10.48550/arXiv.2401.04304 CrossRefGoogle Scholar
Bernardi, G., et al. 2013, ApJ, 771, 105. https://doi.org/10.1088/0004-637X/771/2/105. arXiv: 1305.6047 [astro-ph.CO].CrossRefGoogle Scholar
Bernardi, G., Mitchell, D. A., Ord, S. M., Greenhill, L. J., Pindor, B., Wayth, R. B., & Wyithe, J. S. B. 2011, MNRAS, 413, 411. https://doi.org/10.1111/j.1365-2966.2010.18145.x. arXiv: 1012.3719 [astro-ph.CO].CrossRefGoogle Scholar
Briggs, D. S. 1995, American Astronomical Society Meeting Abstracts, 187, 112.02. American Astronomical Society Meeting Abstracts.Google Scholar
Charles, N., et al. 2022, MNRAS, 512, 2716. https://doi.org/10.1093/mnras/stac709. arXiv: 2112.12765 [astro-ph.CO].CrossRefGoogle Scholar
DeBoer, D. R., et al. 2017, PASP, 129, 045001. https://doi.org/10.1088/1538-3873/129/974/045001. arXiv: 1606.07473 [astro-ph.IM].CrossRefGoogle Scholar
Di Tommaso, P., Chatzou, M., Floden, E., Prieto Barja, P., Palumbo, E., & Notredame, C. 2023, Astrophysics Source Code Library, record ascl:2305.024, May.Google Scholar
Ewall-Wice, A., Dillon, J. S., Liu, A., & Hewitt, J. 2017, MNRAS, 470, 1849. https://doi.org/10.1093/mnras/stx1221. arXiv: 1610.02689 [astro-ph.CO].CrossRefGoogle Scholar
Furlanetto, S. R. 2016, in Understanding the Epoch of Cosmic Reionization: Challenges and Progress, ed. Mesinger, A., 423, 247. Astrophysics and Space Science Library. January. https://doi.org/10.1007/978-3-319-21957-8_9. arXiv: 1511.01131 [astro-ph.CO].CrossRefGoogle Scholar
Hamaker, J. P., Bregman, J. D., & Sault, R. J. 1996, A&ASS, 117, 137.Google Scholar
Collaboration, HERA, et al. 2023, ApJ, 945, 124. https://doi.org/10.3847/1538-4357/acaf50.CrossRefGoogle Scholar
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146. https://doi.org/10.1093/mnras/stw2337. arXiv: 1610.08318 [astro-ph.GA].CrossRefGoogle Scholar
Jordan, C. 2023, Next generation calibration software for the Murchison Widefield Array radio telescope.Google Scholar
Jordan, C. H., et al. 2017, MNRAS, 471, 3974. https://doi.org/10.1093/mnras/stx1797. arXiv: 1707.04978 [astro-ph.IM].CrossRefGoogle Scholar
Josaitis, A. T., Ewall-Wice, A., Fagnoni, N., & de Lera Acedo, E. 2022, MNRAS, 514, 1804. https://doi.org/10.1093/mnras/stac916. arXiv: 2110.10879 [astro-ph.IM].CrossRefGoogle Scholar
Kern, N. S., et al. 2020, ApJ, 888, 70. https://doi.org/10.3847/1538-4357/ab5e8a. arXiv: 1909.11733 [astro-ph.IM].CrossRefGoogle Scholar
Kolopanis, M., Pober, J. C., Jacobs, D. C., & McGraw, S. 2023, MNRAS, 521, 5120. https://doi.org/10.1093/mnras/stad845. arXiv: 2210.10885 [astro-ph.CO].CrossRefGoogle Scholar
Li, W., et al. 2019, ApJ, 887, 141. https://doi.org/10.3847/1538-4357/ab55e4. arXiv: 1911.10216 [astro-ph.CO].CrossRefGoogle Scholar
Line, J. L. B., Trott, C. M., Cook, J. H., Greig, B., Barry, N., & Jordan, C. H. 2024, https://doi.org/10.48550/arXiv.2404.05140 CrossRefGoogle Scholar
Liu, A., Parsons, A. R., & Trott, C. M. 2014a, PhRvD, 90, 023018. https://doi.org/10.1103/PhysRevD.90.023018. arXiv: 1404.2596 [astro-ph.CO].CrossRefGoogle Scholar
Liu, A., Parsons, A. R., & Trott, C. M. 2014b, PhRvD, 90, 023019. https://doi.org/10.1103/PhysRevD.90.023019. arXiv: 1404.4372 [astro-ph.CO].CrossRefGoogle Scholar
Lynch, C. R., et al. 2021, PASA, 38, e057. https://doi.org/10.1017/pasa.2021.50. arXiv: 2110.08400 [astro-ph.CO].CrossRefGoogle Scholar
Mitchell, D. A., Greenhill, L. J., Wayth, R. B., Sault, R. J., Lonsdale, C. J., Cappallo, R. J., Morales, M. F., & Ord, S. M. 2008, IEEE JSTSP, 2, 707. https://doi.org/10.1109/JSTSP.2008.2005327.CrossRefGoogle Scholar
Mitchell, D., Greenhill, L., Wayth, R., Ord, S., Sault, R., Doeleman, S., Kasper, J., & Morales, M. 2007, American Astronomical Society Meeting Abstracts, 211, 11.03. American Astronomical Society Meeting Abstracts. December.Google Scholar
Moore, D. F., et al. 2017, ApJ, 836, 154. https://doi.org/10.3847/1538-4357/836/2/154. arXiv: 1502.05072 [astro-ph.CO].CrossRefGoogle Scholar
Morales, M. F., Beardsley, A., Pober, J., Barry, N., Hazelton, B., Jacobs, D., & Sullivan, I. 2019, MNRAS, 483, 2207. https://doi.org/10.1093/mnras/sty2844. arXiv: 1810.08731[astro-ph.CO].CrossRefGoogle Scholar
Morales, M. F., Bowman, J. D., & Hewitt, J. N. 2006, ApJ, 648, 767. https://doi.org/10.1086/506135. arXiv: astro-ph/0510027 [astro-ph].CrossRefGoogle Scholar
Morales, M. F., & Hewitt, J. 2004, ApJ, 615, 7. https://doi.org/10.1086/424437. arXiv: astro-ph/0312437 [astro-ph].CrossRefGoogle Scholar
Murphy, G. G., et al. 2023, https://doi.org/10.48550/arXiv.2312.03697 CrossRefGoogle Scholar
Neben, A. R., et al. 2016, ApJ, 820, 44. https://doi.org/10.3847/0004-637X/820/1/44. arXiv: 1602.05249 [astro-ph.IM].CrossRefGoogle Scholar
Nunhokee, C. D. 2024, Clustering of observations for EoR experiments using machine learning.Google Scholar
Nunhokee, C. D., et al. 2017, ApJ, 848, 47. https://doi.org/10.3847/1538-4357/aa8b73. arXiv: 1707.04109 [astro-ph.CO].CrossRefGoogle Scholar
Nunhokee, C. D., et al. 2020, ApJ, 897, 5. https://doi.org/10.3847/1538-4357/ab9634. arXiv: 2005.12174 [astro-ph.IM].CrossRefGoogle Scholar
Offringa, A. R. 2010, Astrophysics Source Code Library, record ascl:1010.017, October. ascl: 1010.017.Google Scholar
Offringa, A. R., et al. 2014, MNRAS, 444, 606. https://doi.org/10.1093/mnras/stu1368.arXiv:1407.1943 [astro-ph.IM].CrossRefGoogle Scholar
Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M. 2012, A&A, 539, A95. https://doi.org/10.1051/0004-6361/201118497. arXiv: 1201.3364 [astro-ph.IM].CrossRefGoogle Scholar
Offringa, A. R., et al. 2015, PASA, 32, e008. https://doi.org/10.1017/pasa.2015.7. arXiv: 1501.03946 [astro-ph.IM].CrossRefGoogle Scholar
Ord, S. M., et al. 2010, PASP, 122, 1353. https://doi.org/10.1086/657160. arXiv: 1010.1733 [astro-ph.IM].CrossRefGoogle Scholar
Paciga, G., et al. 2011, MNRAS, 413, 1174. https://doi.org/10.1111/j.1365-2966.2011.18208.x. arXiv: 1006.1351 [astro-ph.CO].CrossRefGoogle Scholar
Patil, A. H., et al. 2016. MNRAS, 463, 4317. https://doi.org/10.1093/mnras/stw2277. arXiv: 1605.07619 [astro-ph.IM].CrossRefGoogle Scholar
Procopio, P., et al. 2017, PASA, 34, e033. https://doi.org/10.1017/pasa.2017.26. arXiv: 1707.02288 [astro-ph.IM].CrossRefGoogle Scholar
Rahimi, M., et al. 2021, MNRAS, 508, 5954. https://doi.org/10.1093/mnras/stab2918. arXiv: 2110.03190 [astro-ph.CO].CrossRefGoogle Scholar
Sokolowski, M., et al. 2017, PASA, 34, e062. https://doi.org/10.1017/pasa.2017.54. arXiv: 1710.07478 [astro-ph.IM].CrossRefGoogle Scholar
Sullivan, I. S., et al. 2012, ApJ, 759, 17. https://doi.org/10.1088/0004-637X/759/1/17. arXiv: 1209.1653 [astro-ph.IM].CrossRefGoogle Scholar
Thompson, A. R., Moran, J. M., & Swenson, G. W. Jr. 2017, Interferometry and Synthesis in Radio Astronomy (3rd edn.) https://doi.org/10.1007/978-3-319-44431-4.Google Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007. https://doi.org/10.1017/pasa.2012.007. arXiv: 1206.6945 [astro-ph.IM].CrossRefGoogle Scholar
Trott, C. M., et al. 2016, ApJ, 818, 139. https://doi.org/10.3847/0004-637X/818/2/139. arXiv: 1601.02073 [astro-ph.IM].CrossRefGoogle Scholar
Trott, C. M., et al. 2020, MNRAS, 493, 4711. https://doi.org/10.1093/mnras/staa414. arXiv: 2002.02575 [astro-ph.CO].CrossRefGoogle Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2. https://doi.org/10.1051/0004-6361/201220873. arXiv: 1305.3550 [astro-ph.IM].CrossRefGoogle Scholar
Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R. 2012, ApJ, 745, 176. https://doi.org/10.1088/0004-637X/745/2/176. arXiv: 1106.1297 [astro-ph.IM].CrossRefGoogle Scholar
Wayth, R. B., et al. 2015, PASA, 32, e025. https://doi.org/10.1017/pasa.2015.26. arXiv: 1505.06041 [astro-ph.IM].CrossRefGoogle Scholar
Wayth, R. B., et al. 2018, PASA, 35, e033. https://doi.org/10.1017/pasa.2018.37. arXiv: 1809.06466 [astro-ph.IM].CrossRefGoogle Scholar
Wilensky, M. J., Morales, M. F., Hazelton, B. J., Barry, N., Byrne, R., & Roy, S. 2019, PASP, 131, 114507. https://doi.org/10.1088/1538-3873/ab3cad. arXiv: 1906.01093 [astro-ph.IM].CrossRefGoogle Scholar
Wilensky, M. J., et al. 2023, ApJ, 957, 78. https://doi.org/10.3847/1538-4357/acffbd. arXiv: 2310.03851 [astro-ph.CO].CrossRefGoogle Scholar