Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-05-03T14:03:21.758Z Has data issue: false hasContentIssue false

Semi-empirical calibration of the oxygen abundance for LINER galaxies based on SDSS-IV MaNGA – The case for strong and weak AGN

Published online by Cambridge University Press:  04 December 2024

Celso B. Oliveira*
Affiliation:
Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
Oli Dors
Affiliation:
Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
Igor Zinchenko
Affiliation:
Faculty of Physics, Ludwig-Maximilians-Universität, Munich, Germany Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Monica Cardaci
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentina Instituto de Astrofisica de La Plata (CONICET-UNLP), La Plata, Argentina
Guillermo Hägele
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentina Instituto de Astrofisica de La Plata (CONICET-UNLP), La Plata, Argentina
Istenio Morais
Affiliation:
Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
Pedro Santos
Affiliation:
Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
Gleicy Almeida
Affiliation:
Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
*
Corresponding author: C. B. Oliveira, Email: [email protected].

Abstract

In this paper, we present a semi-empirical calibration between the oxygen abundance and the N2 emission-line ratio for low ionisation nuclear emission regions (LINERs). This relation was derived by comparing the optical spectroscopic data of 118 nuclear spaxels classified as LINERs using three different BPT diagrams from the Mapping Nearby Galaxies survey (MaNGA) and sub-classified as weak (wAGN, 84 objects) and strong (sAGN, 34 objects) active galactic nucleus (AGN) from the WHAN diagnostic diagram and photoionisation model results obtained with the cloudy code assuming gas accretion into a black hole (representing an AGN). We found that our wAGN LINERs exhibit an oxygen abundance in the range of $8.50 \lesssim \mathrm{12+\log(O/H)} \lesssim 8.90 $, with an average value of $\mathrm{12+\log(O/H)}=8.68$, while our sAGN LINERs exhibit an oxygen abundance in the range of $8.51 \lesssim \: \mathrm{12+\log(O/H)} \: \lesssim \: 8.81 $, with an average value of $\mathrm{12+\log(O/H)}=8.65$. Our abundance estimations are in good agreement with those derived for another two different samples one of them with 463 Seyfert 2 objects and the other with 43 LINERs galaxies ionised by post-AGB stars, showing that the assumptions of our models are likely suitable for wAGN and sAGN LINERs. A relation between the equivalent width of the observed H$\alpha$ emission-line and the estimated ionisation parameter provided by models was obtained. Our results also suggest that LINERs does not show a clear correlation between oxygen abundances and the stellar mass of the hosting galaxies.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdurro’uf, et al. 2022, ApJS, 259, 35CrossRefGoogle Scholar
Alloin, D., Collin-Souffrin, S., Joly, M., & Vigroux, L. 1979, A&A, 78, 200Google Scholar
Annibali, F., et al. 2010, A&A, 519, A40CrossRefGoogle Scholar
Asari, N. V., et al. 2007, MNRAS, 381, 263CrossRefGoogle Scholar
Avni, Y., Soltan, A., Tananbaum, H., & Zamorani, G. 1980, ApJ, 238, 800CrossRefGoogle Scholar
Baldwin, J. A. 1977, ApJ, 214, 679CrossRefGoogle Scholar
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5CrossRefGoogle Scholar
Banerji, M., et al. 2015, MNRAS, 454, 419Google Scholar
Barger, A. J., et al. 2015, ApJ, 801, 87Google Scholar
Binette, L., Prieto, A., Szuszkiewicz, E., & Zheng, W. 1989, ApJ, 343, 135CrossRefGoogle Scholar
Blanton, M. R., et al. 2017, AJ, 154, 28Google Scholar
Brown, J. S., Martini, P., & Andrews, B. H. 2016, MNRAS, 458, 1529CrossRefGoogle Scholar
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Bundy, K., et al. 2015, ApJ, 798, 7Google Scholar
Carr, D. J., Salzer, J. J., Gronwall, C., & Williams, A. L. 2023, arXiv e-prints, arXiv:2308.06824Google Scholar
Carvalho, S. P., et al. 2020, MNRAS, 492, 5675CrossRefGoogle Scholar
Castro, C. S., Dors, O. L., Cardaci, M. V., & Hägele, G. F. 2017, MNRAS, 467, 1507Google Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363CrossRefGoogle Scholar
Cid Fernandes, R., Stasińska, G., Mateus, A., & Vale Asari, N. 2011, MNRAS, 413, 1687CrossRefGoogle Scholar
Sodrà Cid Fernandes, R., et al. 2010, MNRAS, 403, 1036CrossRefGoogle Scholar
Constantin, A., et al. 2015, ApJ, 814, 149CrossRefGoogle Scholar
Copetti, M. V. F., Pastoriza, M. G., & Dottori, H. A. 1985, A&A, 152, 427Google Scholar
Curti, M., et al. 2017, MNRAS, 465, 1384CrossRefGoogle Scholar
Daz, Á. I., Terlevich, E., Castellanos, M., & Hägele, G. F. 2007, MNRAS, 382, 251Google Scholar
Daz, Á. I., & Zamora, S. 2022, MNRAS, 511, 4377CrossRefGoogle Scholar
Dietrich, M., et al. 2002, ApJ, 581, 912CrossRefGoogle Scholar
do Nascimento, J. C., et al. 2022, MNRAS, 513, 807CrossRefGoogle Scholar
Dopita, M. A., Kewley, L. J., Heisler, C. A., & Sutherland, R. S. 2000, ApJ, 542, 224CrossRefGoogle Scholar
Dopita, M. A., & Sutherland, R. S. 2003, Astrophysics of the Diffuse Universe (Springer), doi: 10.1007/978-3-662-05866-4 Google Scholar
Dopita, M. A., et al. 2006, ApJ, 647, 244Google Scholar
Dors, O. L. 2021, MNRAS, 507, 466CrossRefGoogle Scholar
Dors, O. L., Arellano-Córdova, K. Z., Cardaci, M. V., & Hägele, G. F. 2017a, MNRAS, 468, L113CrossRefGoogle Scholar
Dors, O. L., Cardaci, M. V., Hägele, G. F., & Krabbe, Â. C. 2014, MNRAS, 443, 1291Google Scholar
Dors, O. L., et al. 2021, MNRAS, 501, 1370CrossRefGoogle Scholar
Dors, O. L., Hägele, G. F., Cardaci, M. V., & Krabbe, A. C. 2017b, MNRAS, 466, 726CrossRefGoogle Scholar
Dors, O. L., Krabbe, A., Hägele, G. F., & Pérez-Montero, E. 2011, MNRAS, 415, 3616CrossRefGoogle Scholar
Dors, O. L., et al. 2020a, MNRAS, 496, 3209Google Scholar
Dors, O. L., Monteiro, A. F., Cardaci, M. V., Hägele, G. F., & Krabbe, A. C. 2019, MNRAS, 486, 5853CrossRefGoogle Scholar
Dors, O. L., Storchi-Bergmann, T., Riffel, R. A., & Schimdt, A. A. 2008, A&A, 482, 59CrossRefGoogle Scholar
Dors, O. L., et al. 2020b, MNRAS, 492, 468Google Scholar
Dors, O. L., et al. 2022, MNRAS, 514, 5506CrossRefGoogle Scholar
Dottori, H. A. 1981, Ap&SS, 80, 267CrossRefGoogle Scholar
Duarte Puertas, S., et al. 2022, A&A, 666, A186CrossRefGoogle Scholar
Eracleous, M., Hwang, J. A., & Flohic, H. M. L. G. 2010, ApJS, 187, 135CrossRefGoogle Scholar
Espinosa-Ponce, C., et al. 2022, MNRAS, 512, 3436CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 455CrossRefGoogle Scholar
Feltre, A., Charlot, S., & Gutkin, J. 2016, MNRAS, 456, 3354CrossRefGoogle Scholar
Feltre, A., et al. 2023, A&A, 675, A74CrossRefGoogle Scholar
Ferland, G. J., & Netzer, H. 1983, ApJ, 264, 105CrossRefGoogle Scholar
Ferland, G. J., et al. 2013, RMxAA, 49, 137Google Scholar
Ferland, G. J., et al. 2017, RMxAA, 53, 385Google Scholar
Fernandes, R. C., Leão, J. R. S., & Lacerda, R. R. 2003, MNRAS, 340, 29Google Scholar
Florido, E., Zurita, A., & Pérez-Montero, E. 2022, MNRAS, 513, 2006CrossRefGoogle Scholar
Flury, S. R., & Moran, E. C. 2020, MNRAS, 496, 2191CrossRefGoogle Scholar
Grevesse, N., Asplund, M., Sauval, A. J., & Scott, P. 2010, Ap&SS, 328, 179CrossRefGoogle Scholar
Hägele, G. F., Daz, Á. I., Cardaci, M. V., Terlevich, E., & Terlevich, R. 2007, MNRAS, 378, 163CrossRefGoogle Scholar
Hägele, G. F., Daz, Á. I., Cardaci, M. V., Terlevich, E., & Terlevich, R. 2009, MNRAS, 396, 2295CrossRefGoogle Scholar
Hägele, G. F., Daz, Á. I., Cardaci, M. V., Terlevich, E., & Terlevich, R. 2010, MNRAS, 402, 1005CrossRefGoogle Scholar
Hägele, G. F., et al. 2008, MNRAS, 383, 209CrossRefGoogle Scholar
Hägele, G. F., et al. 2013, MNRAS, 432, 810CrossRefGoogle Scholar
Hägele, G. F., Firpo, V., Bosch, G., Daz, Á. I., & Morrell, N. 2012, MNRAS, 422, 3475CrossRefGoogle Scholar
Hägele, G. F., et al. 2011, MNRAS, 414, 272CrossRefGoogle Scholar
Hägele, G. F., Pérez-Montero, E., Daz, Á. I., Terlevich, E., & Terlevich, R. 2006, MNRAS, 372, 293CrossRefGoogle Scholar
Halpern, J. P., & Steiner, J. E. 1983, ApJ, 269, L37CrossRefGoogle Scholar
Harrison, C. M., et al. 2012, ApJ, 760, L15CrossRefGoogle Scholar
Hatziminaoglou, E., et al. 2010, A&A, 518, L33Google Scholar
Heckman, T. M. 1980, A&A, 87, 152Google Scholar
Ho, I. T. 2019, MNRAS, 485, 3569CrossRefGoogle Scholar
Ho, L. C. 1999, ApJ, 516, 672CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. 1995, ApJS, 98, 477CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1993, ApJ, 417, 63CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315CrossRefGoogle Scholar
Hogarth, L., et al. 2020, MNRAS, 494, 3541CrossRefGoogle Scholar
Ilha, G. S., et al. 2022, MNRAS, 516, 1442CrossRefGoogle Scholar
Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G., & Thuan, T. X. 2006, A&A, 448, 955CrossRefGoogle Scholar
Izotov, Y. I., Thuan, T. X., & Lipovetsky, V. A. 1994, ApJ, 435, 647CrossRefGoogle Scholar
Jensen, E. B., Strom, K. M., & Strom, S. E. 1976, ApJ, 209, 748CrossRefGoogle Scholar
Ji, X., & Yan, R. 2022, A&A, 659, A112Google Scholar
Kauffmann, G., et al. 2003, MNRAS, 346, 1055CrossRefGoogle Scholar
Kennicutt, Robert C., J., Bresolin, F., & Garnett, D. R. 2003, ApJ, 591, 801CrossRefGoogle Scholar
Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121CrossRefGoogle Scholar
Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961CrossRefGoogle Scholar
Kewley, L. J., Nicholls, D. C., & Sutherland, R. S. 2019, ARA&A, 57, 511CrossRefGoogle Scholar
Kobulnicky, H. A., Kennicutt, Robert C., J., & Pizagno, J. L. 1999, ApJ, 514, 544CrossRefGoogle Scholar
Korista, K., Baldwin, J., & Ferland, G. 1998, ApJ, 507, 24CrossRefGoogle Scholar
Krabbe, A. C., et al. 2021, MNRAS, 505, 2087CrossRefGoogle Scholar
Kreckel, K., et al. 2019, ApJ, 887, 80CrossRefGoogle Scholar
Kumari, N., Amorn, R., Pérez-Montero, E., Vlchez, J., & Maiolino, R. 2021, MNRAS, 508, 1084CrossRefGoogle Scholar
Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A., & Torres-Peimbert, S. 1979, A&A, 80, 155Google Scholar
Li, S.-L., et al. 2024, MNRAS, 529, 4993CrossRefGoogle Scholar
López-Sánchez, Á. R., et al. 2012, MNRAS, 426, 2630CrossRefGoogle Scholar
López-Sánchez, A. R., & Esteban, C. 2009, A&A, 508, 615CrossRefGoogle Scholar
López-Sánchez, Á. R., & Esteban, C. 2010, A&A, 517, A85CrossRefGoogle Scholar
Lutz, D., et al. 2010, ApJ, 712, 1287Google Scholar
Maiolino, R., & Mannucci, F. 2019, A&AR, 27, 3CrossRefGoogle Scholar
Maoz, D. 2007, MNRAS, 377, 1696CrossRefGoogle Scholar
Marino, R. A., et al. 2013, A&A, 559, A114Google Scholar
Mateus, A., et al. 2006, MNRAS, 370, 721CrossRefGoogle Scholar
McGaugh, S. S. 1991, ApJ, 380, 140CrossRefGoogle Scholar
Mingozzi, M., et al. 2020, A&A, 636, A42CrossRefGoogle Scholar
Morales-Luis, A. B., Pérez-Montero, E., Sánchez Almeida, J., & Muñoz-Tuñón, C. 2014, ApJ, 797, 81CrossRefGoogle Scholar
Morisset, C., et al. 2016, A&A, 594, A37CrossRefGoogle Scholar
Nagao, T., Maiolino, R., & Marconi, A. 2006, A&A, 459, 85CrossRefGoogle Scholar
Netzer, H. 2013, The Physics and Evolution of Active Galactic Nuclei (Cambridge University Press)CrossRefGoogle Scholar
Netzer, H., Laor, A., & Gondhalekar, P. M. 1992, MNRAS, 254, 15CrossRefGoogle Scholar
Newville, M., et al. 2016, Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python, Astrophysics Source Code Library, record ascl:1606.014, ascl:1606.014Google Scholar
Oliveira, C. B., et al. 2024, MNRAS, 531, 199Google Scholar
Oliveira, C. B., et al. 2022, MNRAS, 515, 6093CrossRefGoogle Scholar
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books)Google Scholar
Page, M. J., et al. 2012, Natur, 485, 213Google Scholar
Pagel, B. E. J., Edmunds, M. G., Blackwell, D. E., Chun, M. S., & Smith, G. 1979, MNRAS, 189, 95CrossRefGoogle Scholar
Peimbert, M., Peimbert, A., & Delgado-Inglada, G. 2017, PASP, 129, 082001CrossRefGoogle Scholar
Pérez-Daz, B., Masegosa, J., Márquez, I., & Pérez-Montero, E. 2021, MNRAS, 505, 4289CrossRefGoogle Scholar
Pérez-Montero, E. 2014, MNRAS, 441, 2663CrossRefGoogle Scholar
Pérez-Montero, E. 2017, PASP, 129, 043001CrossRefGoogle Scholar
Pérez-Montero, E., et al. 2021, MNRAS, 504, 1237CrossRefGoogle Scholar
Pérez-Montero, E., Daz, A. I., Vlchez, J. M., & Kehrig, C. 2006, A&A, 449, 193CrossRefGoogle Scholar
Pérez-Montero, E., et al. 2019, MNRAS, 489, 2652CrossRefGoogle Scholar
Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59CrossRefGoogle Scholar
Pilyugin, L. S. 2003, A&A, 399, 1003CrossRefGoogle Scholar
Pilyugin, L. S., & Grebel, E. K. 2016, MNRAS, 457, 3678CrossRefGoogle Scholar
Pilyugin, L. S., Vlchez, J. M., & Contini, T. 2004, A&A, 425, 849CrossRefGoogle Scholar
Collaboration, Planck, et al. 2021, A&A, 652, C4Google Scholar
Poetrodjojo, H., et al. 2018, MNRAS, 479, 5235CrossRefGoogle Scholar
Pović, H., et al. 2016, MNRAS, 462, 2878CrossRefGoogle Scholar
Raimann, D., Storchi-Bergmann, T., Bica, E., Melnick, J., & Schmitt, H. 2000, MNRAS, 316, 559CrossRefGoogle Scholar
Ramasawmy, J., Stevens, J., Martin, G., & Geach, J. E. 2019, MNRAS, 486, 4320CrossRefGoogle Scholar
Rauch, T. 2003, A&A, 403, 709CrossRefGoogle Scholar
Riffel, R., Pastoriza, M. G., Rodrguez-Ardila, A., & Bonatto, C. 2009, MNRAS, 400, 273CrossRefGoogle Scholar
Riffel, R., et al. 2023, MNRAS, 524, 5640CrossRefGoogle Scholar
Rosario, D. J., et al. 2012, A&A, 545, A45Google Scholar
Rovilos, E., et al. 2012, A&A, 546, A58CrossRefGoogle Scholar
Sánchez, S. F., et al. 2016, RMxAA, 52, 171Google Scholar
Shao, L., et al. 2010, A&A, 518, L26Google Scholar
Shields, J. C. 1992, ApJ, 399, L27CrossRefGoogle Scholar
Shields, J. C. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 373, The Central Engine of Active Galactic Nuclei, ed. Ho, L. C., & Wang, J. W., 355Google Scholar
Shlosman, I., Begelman, M. C., & Frank, J. 1990, Natur, 345, 679Google Scholar
Stanley, F., et al. 2015, MNRAS, 453, 591Google Scholar
Sodrà Stasińska, G., Costa-Duarte, M. V., Vale Asari, N., Cid Fernandes, R., & Sodré, L. 2015, MNRAS, 449, 559CrossRefGoogle Scholar
Stasińska, G., & Leitherer, C. 1996, ApJS, 107, 661CrossRefGoogle Scholar
Steidel, C. C., et al. 2014, ApJ, 795, 165CrossRefGoogle Scholar
Storchi-Bergmann, T., Calzetti, D., & Kinney, A. L. 1994, ApJ, 429, 572CrossRefGoogle Scholar
Storchi-Bergmann, T., Rodriguez-Ardila, A., Schmitt, H. R., Wilson, A. S., & Baldwin, J. A. 1996, ApJ, 472, 83CrossRefGoogle Scholar
Storchi-Bergmann, T., Schmitt, H. R., Calzetti, D., & Kinney, A. L. 1998, The AJ, 115, 909CrossRefGoogle Scholar
Suh, H., et al. 2017, ApJ, 841, 102CrossRefGoogle Scholar
Terlevich, R., & Melnick, J. 1985, MNRAS, 213, 841CrossRefGoogle Scholar
Thomas, A. D., et al. 2018, ApJ, 856, 89CrossRefGoogle Scholar
Thomas, A. D., et al. 2019, ApJ, 874, 100CrossRefGoogle Scholar
Toribio San Cipriano, L., et al. 2017, MNRAS, 467, 3759CrossRefGoogle Scholar
van Zee, L., Salzer, J. J., Haynes, M. P., O’Donoghue, A. A., & Balonek, T. J. 1998, AJ, 116, 2805CrossRefGoogle Scholar
Veilleux, S., & Osterbrock, D. E. 1987, ApJS, 63, 295CrossRefGoogle Scholar
Wang, Y., Liu, W., Shang, Z., & Brotherton, M. S. 2022, MNRAS, 515, 5836CrossRefGoogle Scholar
Whitford, A. E. 1958, AJ, 63, 201CrossRefGoogle Scholar
York, D. G., et al. 2000, AJ, 120, 1579Google Scholar
Younes, G., Porquet, D., Sabra, B., Reeves, J. N., & Grosso, N. 2012, A&A, 539, A104CrossRefGoogle Scholar
Zaritsky, D., Kennicutt, R. Jr. C., & Huchra, J. P. 1994, ApJ, 420, 87CrossRefGoogle Scholar
Zhang, K., Wang, T.-G., Gaskell, C. M., & Dong, X.-B. 2013, ApJ, 762, 51CrossRefGoogle Scholar
Zinchenko, I. A. 2023, A&A, 674, L7CrossRefGoogle Scholar
Zinchenko, I. A., Dors, O. L., Hägele, G. F., Cardaci, M. V., & Krabbe, A. C. 2019a, MNRAS, 483, 1901CrossRefGoogle Scholar
Zinchenko, I. A., Just, A., Pilyugin, L. S., & Lara-Lopez, M. A. 2019b, A&A, 623, A7CrossRefGoogle Scholar
Zinchenko, I. A., et al. 2021, A&A, 655, A58CrossRefGoogle Scholar