Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-05-02T00:33:18.316Z Has data issue: false hasContentIssue false

Self-supervised contrastive learning of radio data for source detection, classification and peculiar object discovery

Published online by Cambridge University Press:  05 November 2024

S. Riggi*
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
T. Cecconello
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
S. Palazzo
Affiliation:
Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
A.M. Hopkins
Affiliation:
School of Mathematical and Physical Sciences, 12 Wally’s Walk, Macquarie University, NSW 2109, Australia
N. Gupta
Affiliation:
CSIRO Space & Astronomy, PO Box 1130, Bentley WA 6102, Australia
C. Bordiu
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
A. Ingallinera
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
C. Buemi
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
F. Bufano
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
F. Cavallaro
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
M.D. Filipović
Affiliation:
Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
P. Leto
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
S. Loru
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
A.C. Ruggeri
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
C. Trigilio
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
G. Umana
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
F. Vitello
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy
*
Corresponding author: S. Riggi; Email: [email protected].

Abstract

New advancements in radio data post-processing are underway within the Square Kilometre Array (SKA) precursor community, aiming to facilitate the extraction of scientific results from survey images through a semi-automated approach. Several of these developments leverage deep learning methodologies for diverse tasks, including source detection, object or morphology classification, and anomaly detection. Despite substantial progress, the full potential of these methods often remains untapped due to challenges associated with training large supervised models, particularly in the presence of small and class-unbalanced labelled datasets.

Self-supervised learning has recently established itself as a powerful methodology to deal with some of the aforementioned challenges, by directly learning a lower-dimensional representation from large samples of unlabelled data. The resulting model and data representation can then be used for data inspection and various downstream tasks if a small subset of labelled data is available.

In this work, we explored contrastive learning methods to learn suitable radio data representations by training the SimCLR model on large collections of unlabelled radio images taken from the ASKAP EMU and SARAO MeerKAT GPS surveys. The resulting models were fine-tuned over smaller labelled datasets, including annotated images from various radio surveys, and evaluated on radio source detection and classification tasks. Additionally, we employed the trained self-supervised models to extract features from radio images, which were used in an unsupervised search for objects with peculiar morphology in the ASKAP EMU pilot survey data. For all considered downstream tasks, we reported the model performance metrics and discussed the benefits brought by self-supervised pre-training, paving the way for building radio foundational models in the SKA era.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aniyan, A. K., & Thorat, K. 2017, ApJS, 230, 20 CrossRefGoogle Scholar
Banfield, J. K., et al. 2015, MNRAS, 453, 2326 Google Scholar
Becker, R. H., et al. 1995, MNRASx, 450, 559 CrossRefGoogle Scholar
Bengio, Y., et al. 2013, IEEE Trans. Anal, Pattern. Mach. Intell., 35, 1798CrossRefGoogle Scholar
Bonaldi, A., et al. 2021, MNRAS, 500, 3821 Google Scholar
Bordiu, C., et al. 2024, A&A, submittedGoogle Scholar
Bordiu, C., et al. 2023, (eds) Machine Learning for Astrophysics. ML4Astro 2022. Astrophysics and Space Science Proceedings, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-031-34167-0_13 CrossRefGoogle Scholar
Boyce, M. M., et al. 2023, PASA, 40, e027 Google Scholar
Chen, T., et al. 2024 Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020Google Scholar
Cornu, D., et al. 2024, A&A, 690, A211CrossRefGoogle Scholar
Deng, J., et al. 2009, Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248255, https://doi.org/10.1109/CVPR.2009.5206848 CrossRefGoogle Scholar
Dewdney, P., et al. 2016, SKA1 SYSTEM BASELINE DESIGN V2, SKA-TEL-SKO-0000002Google Scholar
Galvin, T. J., et al. 2020, MNRAS, 497, 2730 CrossRefGoogle Scholar
Goedhart, S., et al. 2024, MNRAS, 531, 649 Google Scholar
Grill, J.-B., et al. 2020, In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 1786, 2127121284.Google Scholar
Gupta, N., et al. 2024, PASA, 41, e027Google Scholar
Gupta, N., et al. 2024, PASA, 41, e001 Google Scholar
Gupta, N., et al. 2023, PASA, 40, e044 Google Scholar
Gupta, N., et al. 2022, PASA, 39, e051 Google Scholar
He, K., et al. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770778, doi: 10.1109/CVPR.2016.90.Google Scholar
Hossain, M. S., et al. 2023, Procedia Computer Science 222, 601 CrossRefGoogle Scholar
Hotan, A., et al. 2021, PASA, 38, E009 Google Scholar
He, K., et al. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 29802988, doi: 10.1109/ICCV.2017.322.CrossRefGoogle Scholar
Johnston, S., et al. 2008, ExA, 22, 151 CrossRefGoogle Scholar
Ke, G., et al., 2017, Adv. Neural Inform. Process. Syst., 30, 3146.Google Scholar
Koribalski, B. S., et al. 2021, MNRAS, 505, L11 CrossRefGoogle Scholar
Lacy, M., et al. 2020, PASP, 132, 035001 Google Scholar
Lao, B., et al. 2023, A&C, 44, 100728 CrossRefGoogle Scholar
Lochner, M., Bassett, B. A. 2021, A&C, 36, 100481 CrossRefGoogle Scholar
Lochner, M., et al. 2023, MNRAS, 520, 1439 CrossRefGoogle Scholar
Liu, F. T., et al. 2008, 8th IEEE International Conference on Data Mining, page 413422, https://doi.org/10.1109/ICDM.2008.17 CrossRefGoogle Scholar
Liu, X., et al. 2023, IEEE Trans. Knowl. Data Eng., 35, 857CrossRefGoogle Scholar
Lukic, V., et al. 2018, MNRAS, 476, 246 CrossRefGoogle Scholar
Ma, Z., et al. 2019, ApJS, 240, 34 CrossRefGoogle Scholar
McInnes et al. 2018, J. Open Source Softw., 3(29), 861 CrossRefGoogle Scholar
Mohale, K., & Lochner, M. 2024, MNRAS, 530, 1274 CrossRefGoogle Scholar
Mostert, R. I. J., et al. 2021, A&A, 645, A89 CrossRefGoogle Scholar
Mostert, R. I. J., et al. 2022, A&A, 668, A28 CrossRefGoogle Scholar
Ndung’u, S., et al. 2023, NewAR 97, 101685 CrossRefGoogle Scholar
Norris, R. P., et al. 2011, PASA, 28, 215 CrossRefGoogle Scholar
Norris, R. P., et al. 2021a, PASA, 38, e046 Google Scholar
Norris, R. P., et al. 2021b, PASA, 38, e003 Google Scholar
Pennock, C. M., et al. 2022, MNRAS, 515, 6046 CrossRefGoogle Scholar
Porter, F. A.M., & Scaife, A. M.M. 2023, RAS Techniq. Instrum., 2, 293 Google Scholar
Ralph, N. O., et al. 2019, PASP, 131, 108011 CrossRefGoogle Scholar
Riggi, S., et al. 2021, A&C, 37, 100506 CrossRefGoogle Scholar
Riggi, S., et al. 2023, A&C, 42, 100682 CrossRefGoogle Scholar
Segal, G., et al. 2023, MNRAS, 521, 1429 CrossRefGoogle Scholar
Slijepcevic, V. I., et al. 2022, MNRAS, 514, 2599 CrossRefGoogle Scholar
Slijepcevic, V. I., et al. 2024, RAS Techniq. Instrum., 3, 19 Google Scholar
Shimwell, T. W., et al. 2017, A&A, 598, A104 Google Scholar
Tang, H., et al. 2019, MNRAS, 488, 3358 Google Scholar
Tsung-Yi, L., et al. 2014, Microsoft COCO: Common Objects in Context. CoRR, abs/1405.0312, http://arxiv.org/abs/1405.0312 Google Scholar
Umana, G., et al. 2015, MNRAS, 454, 902 CrossRefGoogle Scholar
Umana, G., et al. 2021, MNRAS, 506, 2232 Google Scholar
Yu, Y., et al. 2022, MNRAS, 511, 4305 CrossRefGoogle Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868 Google Scholar
Wu, C., et al. 2019, MNRAS, 482, 1211 Google Scholar
Zhang, Z., et al. 2022, PASP, 134, 064503 CrossRefGoogle Scholar