Hostname: page-component-55f67697df-sqlfs Total loading time: 0 Render date: 2025-05-08T23:51:16.504Z Has data issue: false hasContentIssue false

Searching for stellar population in the molecular cloud GRSMC 045.49+00.04

Published online by Cambridge University Press:  25 September 2024

Naira Azatyan*
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
Elena Nikoghosyan
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
Anahit Samsonyan
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
Davide Elia
Affiliation:
NAF – Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy
Lex Kaper
Affiliation:
Anton Pannekoek Institute, University of Amsterdam, Amsterdam, The Netherlands
Ararat Yeghikyan
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
Derenik Andreasyan
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
Daniel Baghdasaryan
Affiliation:
Byurakan Astrophysical Observatory, Aragatsotn Province, Byurakan, Armenia
*
Corresponding author: Naira Azatyan; Email: [email protected].

Abstract

Understanding the characteristics of young stellar populations is essential for deriving insights into star formation processes within parent molecular clouds and the influence of massive stars on these processes. This study primarily aims to investigate the young stellar objects (YSOs) within the molecular cloud G 045.49+00.04, including three ultra-compact HII (UC HII) regions: G 45.48+0.13 (IRAS 19117+1107), G 45.45+0.06 (IRAS 19120+1103), and G 45.47+0.05. We used near-, mid-, and far-infrared photometric data along with radiation transfer models and the modified blackbody fitting to identify and study the YSOs and the interstellar medium (ISM). In total, we identified 1482 YSOs in a 12 arcmin radius covering GRSMC 045.49+00.04, with a mass range from 1.5 M${}_{\odot}$ to 22 M${}_{\odot}$. Of these, 315 objects form relatively dense clusters in the UC HII regions, close to the IRAS 19120+1103 and 19117+1107 sources. In each UC HII region, several high-mass stars have been identified, which in all likelihood are responsible for the ionization. The YSOs with 21.8 M${}_{\odot}$ and 13.7 ± 0.4 M${}_{\odot}$ are associated with IRAS 19120+1103 and 19117+1107, respectively. The non-cluster YSOs (1168) are uniformly distributed on the field. The distribution of YSOs from both samples on the colour-magnitude diagram and by the evolutionary ages is different. About 75% of objects in the IRAS clusters are concentrated around the Zero Age Main Sequence and have a well-defined peak at an age of Log(Age[years]) $\approx$ 6.75, with a narrow spread. The non-cluster objects have two concentrations located to the right and left of the 0.1 Myr isochrone and two well-defined peaks at Log(Age) $\approx$ 6.25 and 5.25. The fraction of the near-infrared excess stars, as well as the mass function confirm that the evolutionary age of the cluster is about 1 Myr. The K luminosity functions’ α slopes for the IRAS clusters and non-cluster objects are 0.32 ± 0.04 and 0.72 ± 0.13, respectively. The steeper α slope is suggesting that the non-cluster objects are less evolved, which is well consistent with the evolutionary age. Similar results – including evolutionary age, narrow age spread, and the less evolved nature of non-cluster objects – were also observed for the YSOs in the neighbouring G 45.14+00.14. The both regions (G 045.49+00.04 and G 45.14+00.14) are located and distinguished by their brightness and density at the edge of the bubble around the highly variable X-ray binary GRS 1915+105, which includes a black hole and a K-giant companion. Based on the above, we can assume that the process of star formation in the young IRAS clusters was triggered by the GRS 1915+105-initiated shock front inside the ISM massive condensation, through the process of ‘collecting and collapse’. Most non-cluster objects probably belong to a later generation. Their formation could be triggered by the recurrent activity of GRS 1915+105 and/or through the edge collapse scenario and mass accumulation through the gas flows along the ISM filaments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, L., et al. 2007, P&PV, 361. eprint: astro-ph/0603096.Google Scholar
Andreasyan, D., Azatyan, N., Nikoghosyan, E., Harutyunian, H., & Baghdasaryan, D. 2020, CBAO, 67, 335. https://doi.org/10.52526/25792776-2020.67.2-335.CrossRefGoogle Scholar
Ascenso, J. 2018, in The Birth of Star Clusters, ed. Stahler, S., 424, 1. Astrophysics and Space Science Library. January. https://doi.org/10.1007/978-3-319-22801-3_1. arXiv:1801.09940 [astro-ph.GA].CrossRefGoogle Scholar
Azatyan, N., Nikoghosyan, E., Harutyunian, H., Baghdasaryan, D., & Andreasyan, D. 2020, CBAO, 67, 211. https://doi.org/10.52526/25792776-2020.67.2-211.CrossRefGoogle Scholar
Azatyan, N., Nikoghosyan, E., Harutyunian, H., Baghdasaryan, D., & Andreasyan, D. 2022, PASA, 39. e024. https://doi.org/10.1017/pasa.2022.20. arXiv:2204.06338 [astro-ph.SR].CrossRefGoogle Scholar
Balog, Z., Kenyon, S. J., Lada, E. A., Barsony, M., Vinkó, J., & Gáspaŕ, A. 2004, AJ, 128, 2942. https://doi.org/10.1086/425548. arXiv:astro-ph/0409115 [astro-ph].CrossRefGoogle Scholar
Bhadari, N. K., Dewangan, L. K., Ojha, D. K., Pirogov, L. E., & Maity, A. K. 2022, ApJ, 930, 169. https://doi.org/10.3847/1538-4357/ac65e9. arXiv:2204.00881 [astro-ph.GA].CrossRefGoogle Scholar
Blum, R. D., Conti, P. S., & Damineli, A. 2000, AJ, 119, 1860. https://doi.org/10.1086/301317. arXiv:astro-ph/0001157 [astro-ph].CrossRefGoogle Scholar
Blum, R. D., & McGregor, P. J. 2008, AJ, 135, 1708. https://doi.org/10.1088/0004-6256/135/5/1708. arXiv:0802.2895 [astro-ph].CrossRefGoogle Scholar
Carey, S. J., et al. 2009, PASP, 121, 76. https://doi.org/10.1086/596581.CrossRefGoogle Scholar
Carpenter, J. M., Snell, R. L., Schloerb, F. P., & Skrutskie, M. F. 1993, ApJ, 407, 657. https://doi.org/10.1086/172548.CrossRefGoogle Scholar
Churchwell, E., et al. 2009, PASP, 121, 213. https://doi.org/10.1086/597811.CrossRefGoogle Scholar
Churchwell, Ed. 2002, ARA&A, 40, 27. https://doi.org/10.1146/annurev.astro.40.060401.093845.CrossRefGoogle Scholar
Cyganowski, C. J., et al. 2008, AJ, 136, 2391. https://doi.org/10.1088/0004-6256/136/6/2391. arXiv:0810.0530 [astro-ph].CrossRefGoogle Scholar
de la Fuente, E., Porras, A., Trinidad, M. A., Kurtz, S. E., Kemp, S. N., Tafoya, D., Franco, J., & Rodríguez-Rico, C. 2020, MNRAS, 492, 895. https://doi.org/10.1093/mnras/stz3482. arXiv:1912.08958 [astro-ph.GA].CrossRefGoogle Scholar
Deharveng, L., Zavagno, A., Schuller, F., Caplan, J., Pomarès, M., & De Breuck, C. 2009, A&A 496, 177. https://doi.org/10.1051/0004-6361/200811337. arXiv:0902.0903 [astro-ph.GA].CrossRefGoogle Scholar
Devine, K. E., Churchwell, E. B., Indebetouw, R., Watson, C., & Crawford, S. M. 2008, AJ 135, 2095. https://doi.org/10.1088/0004-6256/135/6/2095.CrossRefGoogle Scholar
Elmegreen, B. G., Efremov, Y., Pudritz, R. E., & Zinnecker, H. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A. P., & Russell, S. S., 179.Google Scholar
Elmegreen, B. G., & Lada, C. J. 1977, ApJ, 214, 725. https://doi.org/10.1086/155302.CrossRefGoogle Scholar
Engels, D., & Jiménez-Esteban, F. 2007, A&A, 475, 941. https://doi.org/10.1051/0004-6361:20078250. arXiv:0710.1697 [astro-ph].CrossRefGoogle Scholar
Feldt, M., Stecklum, B., Henning, Th., Hayward, T. L., Lehmann, Th., & Klein, R. 1998, A&A, 339, 759.Google Scholar
Fender, R. P., & Pooley, G. G. 2000, MNRAS, 318, L1. https://doi.org/10.1046/j.1365-8711.2000.03847.x. arXiv:astro-ph/0006278 [astro-ph].CrossRefGoogle Scholar
Garay, G., Rodriguez, L. F., Moran, J. M., & Churchwell, Ed. 1993, ApJ, 418, 368. https://doi.org/10.1086/173396.CrossRefGoogle Scholar
Griffin, M. J., et al. 2010, A&A, 518, L3. https://doi.org/10.1051/0004-6361/201014519. arXiv:1005.5123 [astro-ph.IM].CrossRefGoogle Scholar
Gutermuth, R. A., et al. 2008, ApJ, 674, 336. https://doi.org/10.1086/524722. arXiv:0710.1860 [astro-ph].CrossRefGoogle Scholar
Hernández, J., Calvet, N., Hartmann, L., Briceño, C., Sicilia-Aguilar, A., & Berlind, P. 2005, AJ, 129, 856. https://doi.org/10.1086/426918. eprint: astro-ph/0410494.CrossRefGoogle Scholar
Jewell, P. R., Snyder, L. E., Walmsley, C. M., Wilson, T. L., & Gensheimer, P. D. 1991, A&A, 242, 211.Google Scholar
Jose, J., et al. 2012, MNRAS, 424, 2486. https://doi.org/10.1111/j.1365-2966.2012.21175.x. arXiv:1212.6594 [astro-ph.SR].CrossRefGoogle Scholar
Kenyon, S. J., Gomez, M., Marzke, R. O., & Hartmann, L. 1994, AJ, 108, 251. https://doi.org/10.1086/117064.CrossRefGoogle Scholar
Kenyon, Scott J., & Hartmann, L. 1995, ApJS, 101, 117. https://doi.org/10.1086/192235.CrossRefGoogle Scholar
Keto, E. 2007, ApJ, 666, 976–981. https://doi.org/10.1086/520320. arXiv:astro-ph/0603856 [astro-ph].CrossRefGoogle Scholar
Kim, W.-J., Kim, K.-T., & Kim, K.-T. 2019, ApJS, 244, 2. https://doi.org/10.3847/1538-4365/ab2fc9. arXiv:1907.11593 [astro-ph.SR].CrossRefGoogle Scholar
Koenig, X. P., Leisawitz, D. T., Benford, D. J., Rebull, L. M., Padgett, D. L., & Assef, R. J. 2012, ApJ, 744, 130. https://doi.org/10.1088/0004-637X/744/2/130.CrossRefGoogle Scholar
Kraemer, K. E., et al. 2003, ApJ, 588, 918. https://doi.org/10.1086/374264.CrossRefGoogle Scholar
Lada, C. J., & Adams, F. C. 1992, ApJ, 393, 278. https://doi.org/10.1086/171505.CrossRefGoogle Scholar
Lada, C. J., Alves, J., & Lada, E. A. 1996, AJ, 111, 1964. https://doi.org/10.1086/117933.CrossRefGoogle Scholar
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57. https://doi.org/10.1146/annurev.astro.41.011802.094844. arXiv:astro-ph/0301540 [astro-ph].CrossRefGoogle Scholar
Lada, C. J., Muench, A. A. Jr., Haisch, K. E., Lada, E. A., Alves, J. F., Tollestrup, E. V., & Willner, S. P. 2000, AJ, 120, 3162. https://doi.org/10.1086/316848. arXiv:astro-ph/0008280 [astro-ph].CrossRefGoogle Scholar
Lada, C. J., Young, E. T., & Greene, T. P. 1993, ApJ, 408, 471. https://doi.org/10.1086/172605.CrossRefGoogle Scholar
Lejeune, T., & Schaerer, D. 2001, A&A, 366, 538. https://doi.org/10.1051/0004-6361:20000214. arXiv:astro-ph/0011497 [astro-ph].CrossRefGoogle Scholar
Lucas, P. W., et al. 2008, MNRAS, 391, 136. https://doi.org/101111/j.1365-2966.2008.13924.x. arXiv:0712.0100.Google Scholar
Mallick, K. K., Ojha, D. K., Tamura, M., Linz, H., Samal, M. R., & Ghosh, S. K. 2015, MNRAS, 447, 2307 . https://doi.org/10.1093/mnras/stu2584. arXiv:1412.1651 [astro-ph.GA].CrossRefGoogle Scholar
Meyer, M. R., Calvet, N., & Hillenbrand, L. A. 1997, AJ, 114, 288. https://doi.org/10.1086/118474.CrossRefGoogle Scholar
Miller, G. E., & Scalo, J. M. 1979, ApJS, 41, 513. https://doi.org/10.1086/190629.CrossRefGoogle Scholar
Molinari, S., et al. 2016, A&A, 591, A149. https://doi.org/10.1051/0004-6361/201526380. arXiv:1604.05911 [astro-ph.GA].CrossRefGoogle Scholar
Motta, S. E., et al. 2021, MNRAS, 503, 152. https://doi.org/10.1093/mnras/stab511. arXiv:2101.01187 [astro-ph.HE].CrossRefGoogle Scholar
Muench, A. A., Alves, J., Lada, C. J., & Lada, E. A. 2001, ApJ, 558, L51. https://doi.org/10.1086/323420. arXiv:astro-ph/0107458 [astro-ph].CrossRefGoogle Scholar
Ortega, M. E., Paron, S., Cichowolski, S., Rubio, M., & Dubner, G. 2012, A&A, 546, A96. https://doi.org/10.1051/0004-6361/201219424. arXiv:1208.5380 [astro-ph.GA].CrossRefGoogle Scholar
Pandian, J. D., Menten, K. M., & Goldsmith, P. F. 2009, ApJ, 706, 1609. https://doi.org/10.1088/0004-637X/706/2/1609. arXiv:0910.3763 [astro-ph.GA].CrossRefGoogle Scholar
Pandian, J. D., Momjian, E., & Goldsmith, P. F. 2007, in American Astronomical Society Meeting Abstracts, 211, 14.15. American Astronomical Society Meeting Abstracts.Google Scholar
Paron, S., Cichowolski, S., & Ortega, M. E. 2009, A&A, 506, 789. https://doi.org/10.1051/0004-6361/200912646. arXiv:0907.4679 [astro-ph.GA].CrossRefGoogle Scholar
Paron, S., Fariña, C., & Ortega, M. E. 2013, A&A, 559, L2. https://doi.org/10.1051/0004-6361/201322521. arXiv:1310.1793 [astro-ph.GA].CrossRefGoogle Scholar
Pestalozzi, M. R., Minier, V., & Booth, R. S. 2005, A&A, 432, 737. https://doi.org/10.1051/0004-6361:20035855. arXiv:astro-ph/0411564 [astro-ph].CrossRefGoogle Scholar
Poglitsch, A., et al. 2010, A&A, 518, L2. https://doi.org/10.1051/0004-6361/201014535. arXiv:1005.1487 [astro-ph.IM].CrossRefGoogle Scholar
Pomarès, M., et al. 2009, A&A, 494, 987. https://doi.org/10.1051/0004-6361:200811050. arXiv:0812.2618 [astro-ph].CrossRefGoogle Scholar
Ponti, G., Fender, R. P., Begelman, M. C., Dunn, R. J. H., Neilsen, J., & Coriat, M. 2012, MNRAS, 422, L11. https://doi.org/10.1111/j.1745-3933.2012.01224.x. arXiv:1201.4172 [astro-ph.HE].CrossRefGoogle Scholar
Preibisch, T., & Mamajek, E. 2008, in Handbook of Star Forming Regions, Volume II, ed. Reipurth, B., 5, 235. https://doi.org/10.48550/arXiv.0809.0407.CrossRefGoogle Scholar
Qiu, Keping, et al. 2008, ApJ, 685, 1005 https://doi.org/10.1086/591044. arXiv:0806.2488 [astro-ph].CrossRefGoogle Scholar
Rathborne, J. M., Johnson, A. M., Jackson, J. M., Shah, R. Y., & Simon, R. 2009, ApJS, 182, 131. https://doi.org/10.1088/0067-0049/182/1/131. arXiv:0904.1217 [astro-ph.SR].CrossRefGoogle Scholar
Reid, M. J., McClintock, J. E., Steiner, J. F., Steeghs, D., Remillard, R. A., Dhawan, V., & Narayan, R. 2014, ApJ, 796, 2. https://doi.org/10.1088/0004-637X/796/1/2. arXiv:1409.2453 [astro-ph.GA].CrossRefGoogle Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328. https://doi.org/10.1086/512039. eprint: astro-ph/0612690.CrossRefGoogle Scholar
Robitaille, T. P., et al. 2008, AJ, 136, 2413. https://doi.org/10.1088/0004-6256/136/6/2413. arXiv:0809.1654 [astro-ph].CrossRefGoogle Scholar
Rodriguez, L. F., & Mirabel, I. F. 1998, A&A, 340, L47. arXiv:astro-ph/9811250 [astro-ph].Google Scholar
Roman-Duval, J., Jackson, J. M., Heyer, M., Johnson, A., Rathborne, J., Shah, R., & Simon, R. 2009, ApJ, 699, 1153. https://doi.org/10.1088/0004-637X/699/2/1153. arXiv:0905.0723 [astro-ph.GA].CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161. https://doi.org/10.1086/145971.CrossRefGoogle Scholar
Sanchawala, K., et al. 2007, ApJ, 667, 963. https://doi.org/10.1086/521044. arXiv:0706.1834 [astro-ph].CrossRefGoogle Scholar
Scalo, J. M. 1986, FCPh, 11, 1.Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525. https://doi.org/10.1086/305772. eprint: astro-ph/9710327.CrossRefGoogle Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593. eprint: astro-ph/0003477.Google Scholar
Solin, O., Ukkonen, E., & Haikala, L. 2012, A&A, 542, A3. https://doi.org/10.1051/0004-6361/201118531. arXiv:1203.5292 [astro-ph.GA].CrossRefGoogle Scholar
Stern, D., et al. 2005. ApJ, 631, 163. https://doi.org/10.1086/432523. arXiv:astro-ph/0410523 [astro-ph].CrossRefGoogle Scholar
Teixeira, P. S., Lada, C. J., & Alves, J. F. 2005, ApJ, 629, 276. https://doi.org/10.1086/430849. arXiv:astro-ph/0504488 [astro-ph].CrossRefGoogle Scholar
Urquhart, J. S., et al.. 2011, MNRAS, 418, 1689. https://doi.org/10.1111/j.1365-2966.2011.19594.x. arXiv:1107.3913 [astro-ph.GA].CrossRefGoogle Scholar
Vig, S., Ghosh, S. K., Ojha, D. K., Verma, R. P., & Tamura, M. 2014, MNRAS, 440, 3078. https://doi.org/10.1093/mnras/stu504. arXiv:1403.4707 [astro-ph.GA].CrossRefGoogle Scholar
Wood, Douglas O. S., & Churchwell, Ed. 1989, ApJS, 69, 831. https://doi.org/10.1086/191329.CrossRefGoogle Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868. https://doi.org/10.1088/0004-6256/140/6/1868. arXiv:1008.0031 [astro-ph.IM].CrossRefGoogle Scholar
Wu, Y. W., et al. 2019, ApJ, 874, 94. https://doi.org/10.3847/1538-4357/ab001a. arXiv:1901.09313 [astro-ph.GA].CrossRefGoogle Scholar
Zdziarski, A. A., Gierliński, M., Rao, A. R., Vadawale, S. V., & Mikołajewska, J. 2005, MNRAS, 360, 825. https://doi.org/10.1111/j.1365-2966.2005.09112.x. arXiv:astro-ph/0504018 [astro-ph].CrossRefGoogle Scholar
Zinnecker, H., & Yorke, H. W. 2007, ARA&A, 45, 481. https://doi.org/10.1146/annurev.astro.44.051905.092549. arXiv:0707.1279 [astro-ph].CrossRefGoogle Scholar
Supplementary material: File

Azatyan et al. supplementary material

Azatyan et al. supplementary material
Download Azatyan et al. supplementary material(File)
File 169.4 KB