Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-27T15:14:49.079Z Has data issue: false hasContentIssue false

Constraining the physical parameters of blazars using the seed factor approach

Published online by Cambridge University Press:  23 September 2024

Chang-Bin Deng
Affiliation:
Department of Physics, Zhejiang Normal University, Jinhua, People’s Republic of China
Yong-You Shi
Affiliation:
Department of Physics, Yunnan Normal University, Kunming, People’s Republic of China
Yu-Jie Song
Affiliation:
Department of Physics, Yunnan Normal University, Kunming, People’s Republic of China
Rui Xue*
Affiliation:
Department of Physics, Zhejiang Normal University, Jinhua, People’s Republic of China
Lei-Ming Du*
Affiliation:
Department of Physics, Yunnan Normal University, Kunming, People’s Republic of China
Ze-Rui Wang*
Affiliation:
College of Physics and Electronic Engineering, Qilu Normal University, Jinan, People’s Republic of China
Zhao-Hua Xie
Affiliation:
Department of Physics, Yunnan Normal University, Kunming, People’s Republic of China
*
Corresponding authors: Rui Xue, Lei-Ming Du, Ze-Rui Wang; Emails: [email protected], [email protected], [email protected]
Corresponding authors: Rui Xue, Lei-Ming Du, Ze-Rui Wang; Emails: [email protected], [email protected], [email protected]
Corresponding authors: Rui Xue, Lei-Ming Du, Ze-Rui Wang; Emails: [email protected], [email protected], [email protected]

Abstract

The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdo, A. A., et al. 2010a, ApJ, 716, 30. https://doi.org/10.1088/0004-637X/716/1/30. arXiv:0912.2040 [astro-ph.CO].CrossRefGoogle Scholar
Abdo, A. A., et al. 2010b, ApJS, 188, 405. https://doi.org/10.1088/0067-0049/188/2/405. arXiv:1002.2280 [astro-ph.HE].CrossRefGoogle Scholar
Abdo, A. A., et al. 2010c, ApJ, 715, 429. https://doi.org/10.1088/0004-637X/715/1/429. arXiv:1002.0150 [astro-ph.HE].CrossRefGoogle Scholar
Abdo, A. A., et al. 2011, ApJ, 727, 129. https://doi.org/10.1088/0004-637X/727/2/129. arXiv:1011.526 [astro-ph.HE].CrossRefGoogle Scholar
Acciari, V. A., et al. 2022, ApJ, 927, 197. https://doi.org/10.3847/1538-4357/ac531d. arXiv:2202.02600 [astro-ph.HE].CrossRefGoogle Scholar
Ackermann, M., et al. 2016, PhRvL, 116, 151105. https://doi.org/10.1103/PhysRevLett.116.151105. arXiv:1511.00693 [astro-ph.CO].CrossRefGoogle Scholar
Agarwal, S., Shukla, A., Mannheim, K., Vaidya, B., Banerjee, B. 2024, ApJL, 968, L1. https://doi.org/10.3847/2041-8213/ad4994. arXiv:2405.09612 [astro-ph.HE]CrossRefGoogle Scholar
Agudo, I., et al. 2012, JPhCS, 355, 012032. https://doi.org/10.1088/1742-6596/355/1/012032. arXiv:1108.0925 [astro-ph.HE].CrossRefGoogle Scholar
Aguilar-Ruiz, E., Fraija, N., Galván-Gámez, A., & Bentez, E. 2022, MNRAS, 512, 1557. https://doi.org/10.1093/mnras/stac591. arXiv:2203.00880 [astro-ph.HE].CrossRefGoogle Scholar
Aharonian, F. A. 2000, NewA, 5, 377. https://doi.org/10.1016/S1384-1076(00)00039-7. arXiv:astro-ph/0003159 [astro-ph].CrossRefGoogle Scholar
Ajello, M., et al. 2015, ApJ, 800, L27. https://doi.org/10.1088/2041-8205/800/2/L27. arXiv:1501.05301 [astro-ph.HE].CrossRefGoogle Scholar
Akaike, H. 1974, IEEE TAC, 19, 716.Google Scholar
Almeyda, T., Robinson, A., Richmond, M., Vazquez, B., & Nikutta, R. 2017, ApJ, 843, 3. https://doi.org/10.3847/1538-4357/aa7687. arXiv:1709.07011 [astro-ph.GA].CrossRefGoogle Scholar
Ammenadka, K. M., Bhattacharya, D., Bhattacharyya, S., Bhatt, N., & Stalin, C. S. 2022, Universe, 8, 534. https://doi.org/10.3390/universe8100534.CrossRefGoogle Scholar
Ansoldi, S., et al. 2018, ApJ, 863, L10. https://doi.org/10.3847/2041-8213/aad083. arXiv:1807.04300 [astro-ph.HE].CrossRefGoogle Scholar
Arsioli, B., & Chang, Y.-L. 2018, A&A, 616, A63. https://doi.org/10.1051/0004-6361/201833005. arXiv:1804.09761 [astro-ph.HE].CrossRefGoogle Scholar
Arsioli, B., & Polenta, G. 2018, A&A, 616, A20. https://doi.org/10.1051/0004-6361/201832786. arXiv:1804.03703 [astro-ph.HE].CrossRefGoogle Scholar
Bennett, C. L., Larson, D., Weiland, J. L., & Hinshaw, G. 2014, ApJ, 794, 135. https://doi.org/10.1088/0004-637X/794/2/135. arXiv:1406.1718 [astro-ph.CO].CrossRefGoogle Scholar
Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, ApJ, 697, 160. https://doi.org/10.1088/0004-637X/697/1/160. arXiv:0812.2283 [astro-ph].CrossRefGoogle Scholar
Błażejowski, M., Sikora, M., Moderski, R., & Madejski, G. M. 2000, ApJ, 545, 107. https://doi.org/10.1086/317791. arXiv:astro-ph/0008154 [astro-ph].CrossRefGoogle Scholar
Blumenthal, G. R., & Gould, R. J. 1970, RvMP, 42, 237. https://doi.org/10.1103/RevModPhys.42.237.CrossRefGoogle Scholar
Böttcher, M., Dermer, C. D., & Finke, J. D. 2008, ApJ, 679, L9. https://doi.org/10.1086/588780. arXiv:0804.3515 [astro-ph].CrossRefGoogle Scholar
Böttcher, M., Reimer, A., Sweeney, K., & Prakash, A. 2013, ApJ, 768, 54. https://doi.org/10.1088/0004-637X/768/1/54. arXiv:1304.0605 [astro-ph.HE].CrossRefGoogle Scholar
Burnham, K. P., & Anderson, D. R. 2002, Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer).Google Scholar
Cao, G., & Wang, J.-C. 2013, MNRAS, 436, 2170. https://doi.org/10.1093/mnras/stt1723. arXiv:1309.3206 [astro-ph.HE].CrossRefGoogle Scholar
Cerruti, M., Zech, A., Boisson, C., & Inoue, S. 2015, MNRAS, 448, 910. https://doi.org/10.1093/mnras/stu2691. arXiv:1411.5968 [astro-ph.HE].CrossRefGoogle Scholar
Chen, L. 2014, ApJ, 788, 179. https://doi.org/10.1088/0004-637X/788/2/179. arXiv:1405.1140 [astro-ph.HE].CrossRefGoogle Scholar
Chen, L., & Bai, J.-M. 2010, CPhL, 27, 119501. https://doi.org/10.1088/0256-307X/27/11/119501. arXiv:1009.2321 [astro-ph.CO].CrossRefGoogle Scholar
Coppi, P. S., & Blandford, R. D. 1990, MNRAS, 245, 453. https://doi.org/10.1093/mnras/245.3.453.CrossRefGoogle Scholar
Costamante, L., et al. 2001, in X-Ray Astronomy: Stellar Endpoints, agn, and the Diffuse x-Ray Back-ground, American Institute of Physics Conference Series, Vol. 599 ed. White, N. E., Malaguti, G., & Palumbo, G. G. C., 586. https://doi.org/10.1063/1.1434692. arXiv:astro-ph/0001410 [astro-ph].CrossRefGoogle Scholar
D’Ammando, F., et al. 2012, MNRAS, 427, 893. https://doi.org/10.1111/j.1365-2966.2012.22041.x. arXiv:1209.0479 [astro-ph.HE].CrossRefGoogle Scholar
Das, A. K., Mondal, S. K., & Prince, R. 2023, MNRAS, 521, 3451. https://doi.org/10.1093/mnras/stad702. arXiv:2303.03039 [astro-ph.HE].CrossRefGoogle Scholar
Das, A. K., Prince, R., & Gupta, N. 2020, ApJS, 248, 8. https://doi.org/10.3847/1538-4365/ab80c3. arXiv:2003.08266 [astro-ph.HE].CrossRefGoogle Scholar
Deng, J., & Jiang, Y. 2023, MNRAS, 521, 6210. https://doi.org/10.1093/mnras/stad821.CrossRefGoogle Scholar
Deng, X.-J., Xue, R., Wang, Z.-R., Xi, S.-Q., Xiao, H.-B., Du, L.-M., & Xie, Z.-H. 2021, MNRAS, 506, 5764. https://doi.org/10.1093/mnras/stab2095. arXiv:2107.08757 [astro-ph.HE].CrossRefGoogle Scholar
Dermer, C. D., Finke, J. D., Krug, H., & Böttcher, M. 2009, ApJ, 692, 32. https://doi.org/10.1088/0004-637X/692/1/32. arXiv:0808.3185 [astro-ph].CrossRefGoogle Scholar
Dermer, C. D., & Menon, G. 2009, High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos.CrossRefGoogle Scholar
Dermer, C. D., & Schlickeiser, R. 1993, ApJ, 416, 458. https://doi.org/10.1086/173251.CrossRefGoogle Scholar
Dondi, L., & Ghisellini, G. 1995, MNRAS, 273, 583. https://doi.org/10.1093/mnras/273.3.583.CrossRefGoogle Scholar
Dotson, A., Georganopoulos, M., Kazanas, D., & Perlman, E. S. 2012, ApJ, 758, L15. https://doi.org/10.1088/2041-8205/758/1/L15. arXiv:1209.2053 [astro-ph.HE].CrossRefGoogle Scholar
Dotson, A., Georganopoulos, M., Meyer, E. T., & McCann, K. 2015, ApJ, 809, 164. https://doi.org/10.1088/0004-637X/809/2/164.CrossRefGoogle Scholar
Dutka, M. S., et al. 2017, ApJ, 835, 182. https://doi.org/10.3847/1538-4357/835/2/182. arXiv:1612.08061 [astro-ph.GA].CrossRefGoogle Scholar
Feng, Y., Hu, S., Zhou, R., & Gao, S. 2022, Universe, 8, 585. https://doi.org/10.3390/universe8110585.CrossRefGoogle Scholar
Foffano, L., Vittorini, V., Tavani, M., & Menegoni, E. 2022, ApJ, 926, 95. https://doi.org/10.3847/1538-4357/ac46fc. arXiv:2201.02454 [astro-ph.HE].CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306. https://doi.org/10.1086/670067. arXiv:1202.3665 [astro-ph.IM].CrossRefGoogle Scholar
Fraija, N., Bentez, E., Hiriart, D., Sorcia, M., López, J. M., Mújica, R., Cabr-era, J. I., & Galván-Gámez, A. 2019, ApJS, 245, 18. https://doi.org/10.3847/1538-4365/ab3f28. arXiv:1908.08663 [astro-ph.HE].CrossRefGoogle Scholar
Gasparyan, S., Sahakyan, N., Baghmanyan, V., & Zargaryan, D. 2018, ApJ, 863, 114. https://doi.org/10.3847/1538-4357/aad234. arXiv:1807.02869 [astro-ph.HE].CrossRefGoogle Scholar
Georganopoulos, M., Meyer, E. T., & Fossati, G. 2012, arXiv e-prints: arXiv:1202.6193. https://doi.org/10.48550/arXiv.1202.6193. arXiv:1202.6193 [astro-ph.HE].CrossRefGoogle Scholar
Ghisellini, G., & Tavecchio, F. 2008a, MNRAS, 386, L28. https://doi.org/10.1111/j.1745-3933.2008.00454.x. arXiv:0801.2569 [astro-ph].CrossRefGoogle Scholar
Ghisellini, G., & Tavecchio, F. 2008b, MNRAS, 387, 1669. https://doi.org/10.1111/j.1365-2966.2008.13360.x. arXiv:0802.1918 [astro-ph].CrossRefGoogle Scholar
Ghisellini, G., & Tavecchio, F. 2008c, MNRAS, 386, L28. https://doi.org/10.1111/j.1745-3933.2008.00454.x. arXiv:0801.2569 [astro-ph].CrossRefGoogle Scholar
Ghisellini, G., & Tavecchio, F. 2009, MNRAS, 397, 985. https://doi.org/10.1111/j.1365-2966.2009.15007.x. arXiv:0902.0793 [astro-ph.CO].CrossRefGoogle Scholar
Ghisellini, G., Tavecchio, F., & Chiaberge, M. 2005, A&A, 432, 401. https://doi.org/10.1051/0004-6361:20041404. arXiv:astro-ph/0406093 [astro-ph].CrossRefGoogle Scholar
Ghisellini, G., Tavecchio, F., Foschini, L., Ghirlanda, G., MaraschiL., & Celotti, A. 2010, MNRAS, 402, 497. https://doi.org/10.1111/j.1365-2966.2009.15898.x. arXiv:0909.0932 [astro-ph.CO].CrossRefGoogle Scholar
Goodman, J., & Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5, 65. https://doi.org/10.2140/camcos.2010.5.65.CrossRefGoogle Scholar
H. E. S. S. Collaboration, et al. 2017, A&A, 606, A59. https://doi.org/10.1051/0004-6361/201731200. arXiv:1707.06090 [astro-ph.HE].CrossRefGoogle Scholar
Harvey, A. L. W., Georganopoulos, M., & Meyer, E. T. 2020, NatCo, 11, 5475. https://doi.org/10.1038/s41467-020-19296-6. arXiv:2010.13670 [astro-ph.HE].CrossRefGoogle Scholar
Hayashida, M., et al. 2012, ApJ, 754, 114. https://doi.org/10.1088/0004-637X/754/2/114. arXiv:1206.0745 [astro-ph.HE].CrossRefGoogle Scholar
Hayashida, M., et al. 2015, ApJ, 807, 79. https://doi.org/10.1088/0004-637X/807/1/79. arXiv:1502.04699 [astro-ph.HE].CrossRefGoogle Scholar
Hu, H.-B., Wang, H.-Q., Xue, R., Peng, F.-K., & Wang, Z.-R. 2024, MNRAS, 528, 7587. https://doi.org/10.1093/mnras/stae522. arXiv:2402.10390 [astro-ph.HE].CrossRefGoogle Scholar
Hu, W., Dai, B.-Z., Zeng, W., Fan, Z.-H., & Zhang, L. 2017, NewA, 52, 82. https://doi.org/10.1016/j.newast.2016.10.011.CrossRefGoogle Scholar
Huang, D., Li, Z., Liao, J., Huang, X., Li, C., Qian, Y., Pei, Z., & Fan, J. 2022, PASP, 134, 084102. https://doi.org/10.1088/1538-3873/ac80d3. arXiv:2207.13058 [astro-ph.GA].CrossRefGoogle Scholar
IceCube Collaboration, et al. 2018, Sci, 361, eaat1378. https://doi.org/10.1126/science. aat1378. arXiv:1807.08816 [astro-ph.HE].CrossRefGoogle Scholar
Jiang, Y., Hu, S.-M., Chen, X., Shao, X., & Huo, Q.-H. 2020, MNRAS, 493, 3757. https://doi.org/10.1093/mnras/staa475. arXiv:1809.04984 [astro-ph.HE].CrossRefGoogle Scholar
Kaspi, S., Brandt, W. N., Maoz, D., Netzer, H., Schneider, D. P., & Shemmer, O. 2007, ApJ, 659, 997. https://doi.org/10.1086/512094. arXiv:astro-ph/0612722 [astro-ph].CrossRefGoogle Scholar
Kushwaha, P., Sahayanathan, S., & Singh, K. P. 2013, MNRAS, 433, 2380. https://doi.org/10.1093/mnras/stt904. arXiv:1305.5065 [astro-ph.HE].CrossRefGoogle Scholar
Li, W.-J., Xue, R., Long, G.-B., Wang, Z.-R., Nagataki, S., Yan, D.-H., & Wang, J.-C. 2022, A&A, 659, A184. https://doi.org/10.1051/0004-6361/202142051. arXiv:2201.12708 [astro-ph.HE].CrossRefGoogle Scholar
Liodakis, I., Hovatta, T., Huppenkothen, D., Kiehlmann, S., Max-Moerbeck, W., & Readhead, A. C. S. 2018, ApJ, 866, 137. https://doi.org/10.3847/1538-4357/aae2b7. arXiv:1809.08249 [astro-ph.HE].CrossRefGoogle Scholar
Lopez-Rodriguez, E., et al. 2018, ApJ, 859, 99. https://doi.org/10.3847/1538-4357/aabd7b. arXiv:1804.04134 [astro-ph.GA].CrossRefGoogle Scholar
Lyu, J., and Rieke, G. H. 2018, ApJ, 866, 92. https://doi.org/10.3847/1538-4357/aae075. arXiv:1809.03080 [astro-ph.GA].CrossRefGoogle Scholar
Macomb, D. J., et al. 1995, ApJ, 449, L99. https://doi.org/10.1086/309646.CrossRefGoogle Scholar
Madejski, G. (Greg), & Sikora, M. 2016, ARA&A, 54, 725. https://doi.org/10.1146/annurev-astro-081913-040044.CrossRefGoogle Scholar
Malik, Z., Shah, Z., Sahayanathan, S., Iqbal, N., & Manzoor, A. 2022, MNRAS, 514, 4259. https://doi.org/10.1093/mnras/stac1616. arXiv:2206.04441 [astro-ph.HE].CrossRefGoogle Scholar
Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5. https://doi.org/10.1086/186531.CrossRefGoogle Scholar
Marscher, A. P., & Gear, W. K. 1985, ApJ, 298, 114. https://doi.org/10.1086/163592.CrossRefGoogle Scholar
Moderski, R., Sikora, M., Coppi, P. S., & Aharonian, F. 2005, MNRAS, 363, 954. https://doi.org/10.1111/j.1365-2966.2005.09494.x. arXiv:astro-ph/0504388 [astro-ph].CrossRefGoogle Scholar
Nalewajko, K., Begelman, M. C., & Sikora, M. 2014, ApJ, 789, 161. https://doi.org/10.1088/0004-637X/789/2/161. arXiv:1405.7694 [astro-ph.HE].CrossRefGoogle Scholar
Oikonomou, F., Murase, K., Padovani, P., Resconi, E., & Mészáros, P. 2019, MNRAS, 489, 4347. https://doi.org/10.1093/mnras/stz2246. arXiv:1906.05302 [astro-ph.HE].CrossRefGoogle Scholar
Orienti, M., D’Ammando, F., Giroletti, M., Finke, J., Ajello, M., Dallacasa, D., & Venturi, T. 2014, MNRAS, 444, 3040. https://doi.org/10.1093/mnras/stu1644. arXiv:1409.0392 [astro-ph.HE].CrossRefGoogle Scholar
Pacciani, L., Tavecchio, F., Donnarumma, I., Stamerra, A., Carrasco, L., Recillas, E., Porras, A., & Uemura, M. 2014, ApJ, 790, 45. https://doi.org/10.1088/0004-637X/790/1/45. arXiv:1312.3998 [astro-ph.HE].CrossRefGoogle Scholar
Padovani, P., Giommi, P., Resconi, E., Glauch, T., Arsioli, B., Sahakyan, N., & Huber, M. 2018, MNRAS, 480, 192. https://doi.org/10.1093/mnras/sty1852. arXiv:1807.04461 [astro-ph.HE].CrossRefGoogle Scholar
Padovani, P., & Giommi, P. 1995, ApJ, 444, 567. https://doi.org/10.1086/175631. arXiv:astro-ph/9412073 [astro-ph].CrossRefGoogle Scholar
Palma, N. I., et al. 2011, ApJ, 735, 60. https://doi.org/10.1088/0004-637X/735/1/60. arXiv:1104.3557 [astro-ph.HE].CrossRefGoogle Scholar
Patel, S. R., Bose, D., Gupta, N., & Zuberi, M. 2021, JHEAp, 29, 31. https://doi.org/10.1016/j.jheap.2020.12.001. arXiv:2012.10291 [astro-ph.HE].CrossRefGoogle Scholar
Patiño-Álvarez, V. M., et al. 2018, MNRAS, 479, 2037. https://doi.org/10.1093/mnras/sty1497. arXiv:1806.01693 [astro-ph.HE].CrossRefGoogle Scholar
Pei, Z., Fan, J., Yang, J., Huang, D., & Li, Z. 2022, ApJ, 925, 97. https://doi.org/10.3847/1538-4357/ac3aeb. arXiv:2112.00530 [astro-ph.HE].CrossRefGoogle Scholar
Potter, W. J., & Cotter, G. 2013a, MNRAS, 429, 1189. https://doi.org/10.1093/mnras/sts407. arXiv:1212.2632 [astro-ph.HE].CrossRefGoogle Scholar
Potter, W. J., & Cotter, G. 2013b, MNRAS, 431, 1840. https://doi.org/10.1093/mnras/stt300. arXiv:1303.1182 [astro-ph.HE].CrossRefGoogle Scholar
Potter, W. J., & Cotter, G. 2013c, MNRAS, 436, 304. https://doi.org/10.1093/mnras/stt1569. arXiv:1310.0462 [astro-ph.HE].CrossRefGoogle Scholar
Prince, R., Raman, G., Hahn, J., Gupta, N., & Majumdar, P. 2018, ApJ, 866, 16. https://doi.org/10.3847/1538-4357/aadadb. arXiv:1808.05027 [astro-ph.HE].CrossRefGoogle Scholar
Roy, A., Patel, S. R., Sarkar, A., Chatterjee, A., & Chitnis, V. R. 2021, MNRAS, 504, 1103. https://doi.org/10.1093/mnras/stab975. arXiv:2104.08566 [astro-ph.HE].CrossRefGoogle Scholar
Rybicki, G. B., Lightman, A. P., & Tayler, R. J. 1981, Natur, 289, 729.Google Scholar
Sahakyan, N. 2018, ApJ, 866, 109. https://doi.org/10.3847/1538-4357/aadade. arXiv:1808.05651.CrossRefGoogle Scholar
Sahakyan, N. 2020, A&A, 635, A25. https://doi.org/10.1051/0004-6361/201936715. arXiv:1911.12087.CrossRefGoogle Scholar
Sahakyan, N., Israyelyan, D., Harutyunyan, G., Khachatryan, M., & Gas-paryan, S. 2020, MNRAS, 498, 2594. https://doi.org/10.1093/mnras/staa2477. arXiv:2008.09675.CrossRefGoogle Scholar
Shukla, A., et al. 2015, ApJ, 798, 2. https://doi.org/10.1088/0004-637X/798/1/2. arXiv:1503.02706.CrossRefGoogle Scholar
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153. https://doi.org/10.1086/173633.CrossRefGoogle Scholar
Sikora, M., Moderski, R., & Madejski, G. M. 2008, ApJ, 675, 71. https://doi.org/10.1086/526419. arXiv:0711.3524 [astro-ph].CrossRefGoogle Scholar
Speagle, J. S. 2019, arXiv e-prints: arXiv:1909.12313. https://doi.org/10.48550/arXiv.1909.12313. arXiv:1909.12313 [stat.OT].CrossRefGoogle Scholar
Tan, C., Xue, R., Du, L.-M., Xi, S.-Q., Wang, Z.-R., & Xie, Z.-H. 2020, ApJS, 248, 27. https://doi.org/10.3847/1538-4365/ab8cc6. arXiv:2005.09553 [astro-ph.HE].CrossRefGoogle Scholar
Tavecchio, F., & Ghisellini, G. 2014, MNRAS, 443, 1224. https://doi.org/10.1093/mnras/stu1196. arXiv:1404.6894 [astro-ph.HE].CrossRefGoogle Scholar
Tavecchio, F., & Ghisellini, G. 2008, MNRAS, 386, 945. https://doi.org/10.1111/j.1365-2966.2008.13072.x. arXiv:0802.0871 [astro-ph].CrossRefGoogle Scholar
Tavecchio, F., Ghisellini, G., Bonnoli, G., & Ghirlanda, G. 2010, MNRAS, 405, L94. https://doi.org/10.1111/j.1745-3933.2010.00867.x. arXiv:1003.3475 [astro-ph.CO].CrossRefGoogle Scholar
Tavecchio, F., Maraschi, L., & Ghisellini, G. 1998, ApJ, 509, 608. https://doi.org/10.1086/306526. arXiv:astro-ph/9809051 [astro-ph].CrossRefGoogle Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803. https://doi.org/10.1086/133630. arXiv:astro-ph/9506063 [astro-ph].CrossRefGoogle Scholar
Wu, L., Wu, Q., Yan, D., Chen, L., & Fan, X. 2018, ApJ, 852, 45. https://doi.org/10.3847/1538-4357/aa9b7e. arXiv:1711.05889 [astro-ph.HE].CrossRefGoogle Scholar
Xue, R., et al. 2016, MNRAS, 463, 3038. https://doi.org/10.1093/mnras/stw2038mnras/stw2038. arXiv:1609.05697 [astro-ph.HE].CrossRefGoogle Scholar
Xue, R., Liu, R.-Y., Wang, Z.-R., Ding, N., & Wang, X.-Y. 2021, ApJ, 906, 51. https://doi.org/10.3847/1538-4357/abc886. arXiv:2011.03681 [astro-ph.HE].CrossRefGoogle Scholar
Xue, R., Wang, Z.-R., & Li, W.-J. 2022, PhRvD, 106, 103021. https://doi.org/10.1103/PhysRevD.106.103021. arXiv:2210.09797 [astro-ph.HE].CrossRefGoogle Scholar
Yamada, Y., Uemura, M., Itoh, R., Fukazawa, Y., Ohno, M., & Imazato, F. 2020, PASJ, 72, 42. https://doi.org/10.1093/pasj/psaa028. arXiv:2003.08016 [astro-ph.HE].CrossRefGoogle Scholar
Yan, D., Wu, Q., Fan, X., Wang, J., & Zhang, L. 2018, ApJ, 859, 168. https://doi.org/10.3847/1538-4357/aac20a. arXiv:1711.05939 [astro-ph.HE].CrossRefGoogle Scholar
Yang, J. H., et al. 2022, ApJS, 262, 18. https://doi.org/10.3847/1538-4365/ac7deb.CrossRefGoogle Scholar
Yang, J. H., et al. 2023, SCPMA, 66, 249511. https://doi.org/10.1007/s11433-022-2062-2.CrossRefGoogle Scholar
Zacharias, M., Böttcher, M., Jankowsky, F., Lenain, J. -P., WagnerS. J., & Wierzcholska, A. 2017, ApJ, 851, 72. https://doi.org/10.3847/1538-4357/aa9bee. arXiv:1711.06117 [astro-ph.HE].CrossRefGoogle Scholar
Zacharias, M., Böttcher, M., Jankowsky, F., Lenain, J. -P., WagnerS. J., & Wierzcholska, A. 2019, ApJ, 871, 19. https://doi.org/10.3847/1538-4357/aaf4f7. arXiv:1811.12299 [astro-ph.HE].CrossRefGoogle Scholar
Zhang, L., Chen, X., He, S., Nie, W., Tang, W., Huang, J., Chen, G., & Fan, J. 2024, ApJS, 271, 27. https://doi.org/10.3847/1538-4365/ad20c8.CrossRefGoogle Scholar