Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-05-01T07:52:34.172Z Has data issue: false hasContentIssue false

Spectro-polarimetric study to constrain accretion-ejection properties of MCG-5-23-16 using IXPE and NuSTAR observations

Published online by Cambridge University Press:  22 October 2024

Santanu Mondal*
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bengaluru, India
Rwitika Chatterjee
Affiliation:
Space Astronomy Group, ISITE Campus, U. R. Rao Satellite Center, ISRO, Bengaluru, India
Vivek K. Agrawal
Affiliation:
Space Astronomy Group, ISITE Campus, U. R. Rao Satellite Center, ISRO, Bengaluru, India
Anuj Nandi
Affiliation:
Space Astronomy Group, ISITE Campus, U. R. Rao Satellite Center, ISRO, Bengaluru, India
*
Corresponding authors: S. Mondal, Emails: [email protected], [email protected].

Abstract

We conducted a study on the X-ray polarisation properties of MCG-5-23-16 by analysing long-term monitoring data from NuSTAR jointly with IXPE observations made in May and November 2022. The re-analysis of IXPE data gives model-dependent polarisation degree, PD (%) = $1.08\pm0.66$ in the energy band 2–8 keV, which agrees with previous studies within error bars. The model-independent analysis of PD poses an upper limit of $\leq3.8$ ($1\sigma$ level) for the same energy band. The observed upper limit of PD, along with broadband spectral analysis (2–79 keV) using an accretion-ejection based model, allowed us to derive the corona geometry (i.e. radius and height) and the accretion disc inclination ($\sim33^\circ$). Additional NuSTAR observations were also analysed to gain insights into the accretion flow properties of the source and to estimate the expected polarisation during those epochs with PD $\sim 4.3\%$. The radius and height of the corona varies between $28.2\pm3.1 - 39.8\pm4.6$ r$_s$ and $14.3\pm1.7-21.4\pm1.9$ r$_s$ respectively, with a mass outflow rate from the corona measuring $0.14\pm0.03-0.2\pm0.03$ Eddington rate ($\dot m_{\mathrm{Edd}}$). The estimated PD values were nearly constant up to a certain radial distance and height of the corona and then decreased for increasing corona geometry. The spectral analysis further provided an estimate for the mass of the central black hole $\sim2\times 10^7$ M$_\odot$ and the velocity of the outflowing gas $\sim0.16-0.19c$. A comparative broadband spectral study using reflection-based models estimates the disc inclination between $\sim 31^\circ\pm8^\circ-45^\circ\pm7^\circ$, and yields an expected PD of 3.4–6.0%. We also found a weak reflection fraction and a less ionised distant reflecting medium. The expected PD measured using accretion-ejection and reflection models is less compared to the expected PD measured for a given disc inclination of $45^\circ$. Our modelling of the disc-corona-outflows and polarisation connection can be extended and validated with data from the recently launched XPoSat, India’s first X-ray Polarimeter Satellite, offering potential applications to other sources.

Type
Research Article
Copyright
© Indian Institute of Astrophysics, 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V, ed. Jacoby, G. H., & Barnes, J., 101, 17. Astronomical Society of the Pacific Conference Series.Google Scholar
Baldini, L., et al. 2022, SoftwareX, 19, 101194. https://doi.org/10.1016/j.softx.2022.101194. arXiv: 2203.06384 [astro-ph.IM].CrossRefGoogle Scholar
Balestra, I., Bianchi, S., & Matt, G. 2004, A&A, 415, 437. https://doi.org/10.1051/0004-6361:20030211. arXiv: astro-ph/0311316 [astro-ph].CrossRefGoogle Scholar
Baloković, M., et al. 2015, ApJ, 800, 62. https://doi.org/10.1088/0004-637X/800/1/62. arXiv: 1412.5978 [astro-ph.HE].CrossRefGoogle Scholar
Barua, S., Adegoke, O. K., Misra, R., Pawar, P., Jithesh, V., & Medhi, B. J. 2023, ApJ, 958, 46. https://doi.org/10.3847/1538-4357/acf464. arXiv: 2308.11552 [astro-ph.HE].CrossRefGoogle Scholar
Beckmann, V., Courvoisier, T. J.-L., Gehrels, N., Lubiński, P., Malzac, J., Petrucci, P.-O., Shrader, C. R., & Soldi, S. 2008, A&A, 492, 93. https://doi.org/10.1051/0004-6361:200810674. arXiv: 0810.3774 [astro-ph].CrossRefGoogle Scholar
Begelman, M. C., & McKee, C. F. 1983, ApJ, 271, 89. https://doi.org/10.1086/161179.CrossRefGoogle Scholar
Beheshtipour, B., Krawczynski, H., & Malzac, J. 2017, ApJ, 850, 14. https://doi.org/10.3847/1538-4357/aa906a. arXiv: 1710.00247 [astro-ph.HE].CrossRefGoogle Scholar
Braito, V., et al. 2007, ApJ, 670, 978. https://doi.org/10.1086/521916. arXiv: 0707.2950 [astro-ph].CrossRefGoogle Scholar
Chakrabarti, S., & Titarchuk, L. G. 1995, ApJ, 455, 623. https://doi.org/10.1086/176610. arXiv: astro-ph/9510005 [astro-ph].CrossRefGoogle Scholar
Chakrabarti, S. K. 1989, ApJ, 347, 365. https://doi.org/10.1086/168125.CrossRefGoogle Scholar
Chakrabarti, S. K. 1997, ApJ, 484, 313. https://doi.org/10.1086/304325. arXiv: astro-ph/9706001 [astro-ph].CrossRefGoogle Scholar
Chakrabarti, S. K. 1999, A&A, 351, 185. arXiv: astro-ph/9910014 [astro-ph].Google Scholar
Connors, P. A., Piran, T., & Stark, R. F. 1980, ApJ, 235, 224. https://doi.org/10.1086/157627.CrossRefGoogle Scholar
Dauser, T., Garcia, J., Parker, M. L., Fabian, A. C., & Wilms, J. 2014, MNRAS, 444, L100. https://doi.org/10.1093/mnrasl/slu125. arXiv: 1408.2347 [astro-ph.HE].CrossRefGoogle Scholar
Debnath, D., Chakrabarti, S. K., & Mondal, S. 2014, MNRAS, 440, L121. https://doi.org/10.1093/mnrasl/slu024. arXiv: 1402.0989 [astro-ph.HE].CrossRefGoogle Scholar
Dewangan, G. C., Griffiths, R. E., & Schurch, N. J. 2003, ApJ, 592, 52. https://doi.org/10.1086/375640. arXiv: astro-ph/0304037 [astro-ph].CrossRefGoogle Scholar
Di Marco, A., et al. 2022, AJ, 163, 170. https://doi.org/10.3847/1538-3881/ac51c9. arXiv: 2202.01093 [astro-ph.IM].CrossRefGoogle Scholar
Done, C., Gierliński, M., & Kubota, A. 2007, A&ARv, 15, 1. https://doi.org/10.1007/s00159-007-0006-1. arXiv: 0708.0148 [astro-ph].CrossRefGoogle Scholar
Dovčiak, M., Muleri, F., Goosmann, R. W., Karas, V., & Matt, G. 2008, MNRAS, 391, 32. https://doi.org/10.1111/j.1365-2966.2008.13872.x. arXiv: 0809.0418 [astro-ph].CrossRefGoogle Scholar
Ferruit, P., Wilson, A. S., & Mulchaey, J. 2000, ApJS, 128, 139. https://doi.org/10.1086/313379.CrossRefGoogle Scholar
Garcia, J., et al. 2014, ApJ, 782, 76. https://doi.org/10.1088/0004-637X/782/2/76. arXiv: 1312.3231 [astro-ph.HE].CrossRefGoogle Scholar
Gianolli, V. E., et al. 2023, MNRAS, 523, 4468. https://doi.org/10.1093/mnras/stad1697. arXiv: 2303.12541 [astro-ph.GA].CrossRefGoogle Scholar
Haardt, F., & Maraschi, L. 1993, ApJ, 413, 507. https://doi.org/10.1086/173020.CrossRefGoogle Scholar
Harrison, F. A., et al. 2013, ApJ, 770, 103. https://doi.org/10.1088/0004-637X/770/2/103. arXiv: 1301.7307 [astro-ph.IM].CrossRefGoogle Scholar
HI4PI Collaboration, et al. 2016, A&A, 594 A116. https://doi.org/10.1051/0004-6361/201629178. arXiv: 1610.06175 [astro-ph.GA].CrossRefGoogle Scholar
Ingram, A., et al. 2023, MNRAS, 525, 5437. https://doi.org/10.1093/mnras/stad2625. arXiv: 2305.13028 [astro-ph.HE].CrossRefGoogle Scholar
Iyer, N., Nandi, A., & Mandal, S. 2015, ApJ, 807, 108. https://doi.org/10.1088/0004-637X/807/1/108. arXiv: 1505.02529 [astro-ph.HE].CrossRefGoogle Scholar
Joye, W. A., & Mandel, E. 2003, in Astronomical Data Analysis Software and Systems XII, ed. Payne, H. E., Jedrzejewski, R. I., & Hook, R. N., 295, 489. Astronomical Society of the Pacific Conference Series.Google Scholar
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., & Pöppel, W. G. L. 2005, A&A, 440, 775. https://doi.org/10.1051/0004-6361:20041864. arXiv: astro-ph/0504140 [astro-ph].CrossRefGoogle Scholar
Kislat, F., Clark, B., Beilicke, M., & Krawczynski, H. 2015, APh, 68, 45. https://doi.org/10.1016/j.astropartphys.2015.02.007. arXiv: 1409.6214 [astro-ph.IM].CrossRefGoogle Scholar
Li, L.-X., Narayan, R., & McClintock, J. E. 2009, ApJ, 691, 847. https://doi.org/10.1088/0004-637X/691/1/847. arXiv: 0809.0866 [astro-ph].CrossRefGoogle Scholar
Liu, V., Zoghbi, A., & Miller, J. M. 2024, ApJ, 963, 38. https://doi.org/10.3847/1538-4357/ad18c8. arXiv: 2312.16354 [astro-ph.HE].CrossRefGoogle Scholar
Magdziarz, P., & Zdziarski, A. A. 1995, MNRAS, 273, 837. https://doi.org/10.1093/mnras/273.3.837.CrossRefGoogle Scholar
Marinucci, A., et al. 2022, MNRAS, 516, 5907. https://doi.org/10.1093/mnras/stac2634. arXiv: 2207.09338 [astro-ph.HE].CrossRefGoogle Scholar
Mattson, B. J., & Weaver, K. A. 2004, ApJ, 601, 771. https://doi.org/10.1086/380502. arXiv: astro-ph/0310468 [astro-ph].CrossRefGoogle Scholar
Molina, M., Bassani, L., Malizia, A., Stephen, J. B., Bird, A. J., Bazzano, A., & Ubertini, P. 2013, MNRAS, 433, 1687. https://doi.org/10.1093/mnras/stt844. arXiv: 1305.2722 [astro-ph.HE].CrossRefGoogle Scholar
Molla, A. A., Chakrabarti, S. K., Debnath, D., & Mondal, S. 2017, ApJ, 834, 88. https://doi.org/10.3847/1538-4357/834/1/88. arXiv: 1611.01266 [astro-ph.HE].CrossRefGoogle Scholar
Mondal, S., Adhikari, T. P., Hryniewicz, K., Stalin, C. S., & Pandey, A. 2022, A&A, 662, A77. https://doi.org/10.1051/0004-6361/202243084. arXiv: 2204.02133 [astro-ph.HE].CrossRefGoogle Scholar
Mondal, S., & Chakrabarti, S. K. 2013, MNRAS, 431, 2716. https://doi.org/10.1093/mnras/stt361.CrossRefGoogle Scholar
Mondal, S., & Chakrabarti, S. K. 2021, ApJ, 920, 41. https://doi.org/10.3847/1538-4357/ac14c2.CrossRefGoogle Scholar
Mondal, S., Chakrabarti, S. K., & Debnath, D. 2014, Ap&SS, 353, 223. https://doi.org/10.1007/s10509-014-2008-6. arXiv: 1406.1878 [astro-ph.HE].CrossRefGoogle Scholar
Nandi, P., Chakrabarti, S. K., & Mondal, S. 2019, ApJ, 877, 65. https://doi.org/10.3847/1538-4357/ab1d62. arXiv: 1905.02147 [astro-ph.HE].CrossRefGoogle Scholar
Onori, F., et al. 2017, MNRAS, 468, L97. https://doi.org/10.1093/mnrasl/slx032. arXiv: 1703.05167 [astro-ph.GA].CrossRefGoogle Scholar
Pal, I., Stalin, C. S., Chatterjee, R., & Agrawal, V. K. 2023, JApA, 44, 87. https://doi.org/10.1007/s12036-023-09981-5. arXiv: 2305.09365 [astro-ph.HE].CrossRefGoogle Scholar
Ponti, G., Papadakis, I., Bianchi, S., Guainazzi, M., Matt, G., Uttley, P., & Bonilla, N. F. 2012, A&A, 542, A83. https://doi.org/10.1051/0004-6361/201118326. arXiv: 1112.2744 [astro-ph.HE].CrossRefGoogle Scholar
Reeves, J. N., et al. 2007, PASJ, 59, 301. https://doi.org/10.1093/pasj/59.sp1.S301. arXiv: astro-ph/0610434 [astro-ph].CrossRefGoogle Scholar
Schnittman, J. D., & Krolik, J. H. 2010, ApJ, 712, 908. https://doi.org/10.1088/0004-637X/712/2/908. arXiv: 0912.0907 [astro-ph.HE].CrossRefGoogle Scholar
Serafinelli, R., et al. 2023, MNRAS, 526, 3540. https://doi.org/10.1093/mnras/stad2801. arXiv: 2309.06092 [astro-ph.HE].CrossRefGoogle Scholar
Strohmayer, T. E. 2017, ApJ, 838, 72. https://doi.org/10.3847/1538-4357/aa643d. arXiv: 1703.00949 [astro-ph.IM].CrossRefGoogle Scholar
Sunyaev, R. A., & Titarchuk, L. G. 1980, A&A, 500, 167.Google Scholar
Sunyaev, R. A., & Titarchuk, L. G. 1985, A&A, 143, 374.Google Scholar
Tagliacozzo, D., et al. 2023, MNRAS, 525, 4735. https://doi.org/10.1093/mnras/stad2627. arXiv: 2305.10213 [astro-ph.HE].CrossRefGoogle Scholar
Tamborra, F., Matt, G., Bianchi, S., & Dovčiak, M. 2018, A&A, 619, A105. https://doi.org/10.1051/0004-6361/201732023. arXiv: 1808.07399 [astro-ph.HE].CrossRefGoogle Scholar
Veron, P., Lindblad, P. O., Zuiderwijk, E. J., Veron, M. P., & Adam, G. 1980, A&A, 87, 245.Google Scholar
Weaver, K. A., & Reynolds, C. S. 1998, ApJL, 503, L39. https://doi.org/10.1086/311527. arXiv: astro-ph/9806168 [astro-ph].CrossRefGoogle Scholar
Weaver, K. A., Yaqoob, T., Mushotzky, R. F., Nousek, J., Hayashi, I., & Koyama, K. 1997, ApJ, 474, 675. https://doi.org/10.1086/303488.CrossRefGoogle Scholar
Wegner, G., et al. 2003, AJ, 126, 2268. https://doi.org/10.1086/378959. arXiv: astro-ph/0308357 [astro-ph].CrossRefGoogle Scholar
Weisskopf, M. C., et al. 2016, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, ed. J.-W. A. den Herder, T.-d. Takahashi, & M. Bautz, 9905:990517. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. https://doi.org/10.1117/12.2235240.CrossRefGoogle Scholar
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914. https://doi.org/10.1086/317016. arXiv: astro-ph/0008425 [astro-ph].CrossRefGoogle Scholar
Zdziarski, A. A., Johnson, W. N., & Magdziarz, P. 1996, MNRAS, 283, 193. https://doi.org/10.1093/mnras/283.1.193. arXiv: astro-ph/9607015 [astro-ph].CrossRefGoogle Scholar
Zoghbi, A., et al. 2017, ApJ, 836, 2. https://doi.org/10.3847/1538-4357/aa582c. arXiv: 1701.02309 [astro-ph.HE].CrossRefGoogle Scholar
Życki, P. T., Done, C., & Smith, D. A. 1999, MNRAS, 309, 561. https://doi.org/10.1046/j.1365-8711.1999.02885.x. arXiv: astro-ph/9904304 [astro-ph].CrossRefGoogle Scholar