No CrossRef data available.
Published online by Cambridge University Press: 01 January 2025
We aim to estimate school value-added dynamically in time. Our principal motivation for doing so is to establish school effectiveness persistence while taking into account the temporal dependence that typically exists in school performance from one year to the next. We propose two methods of incorporating temporal dependence in value-added models. In the first we model the random school effects that are commonly present in value-added models with an auto-regressive process. In the second approach, we incorporate dependence in value-added estimators by modeling the performance of one cohort based on the previous cohort’s performance. An identification analysis allows us to make explicit the meaning of the corresponding value-added indicators: based on these meanings, we show that each model is useful for monitoring specific aspects of school persistence. Furthermore, we carefully detail how value-added can be estimated over time. We show through simulations that ignoring temporal dependence when it exists results in diminished efficiency in value-added estimation while incorporating it results in improved estimation (even when temporal dependence is weak). Finally, we illustrate the methodology by considering two cohorts from Chile’s national standardized test in mathematics.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-024-09979-0.
The manuscript was handled by the ARCS Editor Dr. Nidhi Kohl.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.