Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-28T08:55:11.927Z Has data issue: false hasContentIssue false

Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses

Published online by Cambridge University Press:  27 December 2024

Mengqi Lin
Affiliation:
University of Michigan
Gongjun Xu*
Affiliation:
University of Michigan
*
Correspondence should be made to Gongjun Xu, Department of Statistics, University of Michigan, 456 West Hall, 1085 South University, Ann Arbor 48109, MI, USA. Email: [email protected]

Abstract

Cognitive diagnosis models (CDMs) provide a powerful statistical and psychometric tool for researchers and practitioners to learn fine-grained diagnostic information about respondents’ latent attributes. There has been a growing interest in the use of CDMs for polytomous response data, as more and more items with multiple response options become widely used. Similar to many latent variable models, the identifiability of CDMs is critical for accurate parameter estimation and valid statistical inference. However, the existing identifiability results are primarily focused on binary response models and have not adequately addressed the identifiability of CDMs with polytomous responses. This paper addresses this gap by presenting sufficient and necessary conditions for the identifiability of the widely used DINA model with polytomous responses, with the aim to provide a comprehensive understanding of the identifiability of CDMs with polytomous responses and to inform future research in this field.

Type
Theory & Methods
Copyright
Copyright © 2024 The Author(s), under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-024-09961-w.

References

Allman, E. S., Matias, C., Rhodes, J. A.. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37, 30993132.CrossRefGoogle Scholar
Chen, J., de la Torre, J.. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9, 1474.CrossRefGoogle ScholarPubMed
Chen, J., Torre, J.. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37, 419437.CrossRefGoogle Scholar
Chen, Y., Culpepper, S., Liang, F.. (2020). A sparse latent class model for cognitive diagnosis. Psychometrika, 85, 121153.CrossRefGoogle ScholarPubMed
Chen, Y., Liu, J., Xu, G., Ying, Z.. (2015). Statistical analysis of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850866.CrossRefGoogle Scholar
Chiu, C.-Y., Douglas, J. A., Li, X.. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633665.CrossRefGoogle Scholar
Culpepper, S. A.. (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation. Psychometrika, 84(4), 921940.CrossRefGoogle ScholarPubMed
Culpepper, S. A. (2022). A note on weaker conditions for identifying restricted latent class models for binary responses. Psychometrika, pages 1–17.Google Scholar
Culpepper, S. A., Balamuta, J. J.. (2021). Inferring latent structure in polytomous data with a higher-order diagnostic model. Multivariate Behavioral Research, 58, 368386.CrossRefGoogle ScholarPubMed
de la Torre, J.. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179199.CrossRefGoogle Scholar
de la Torre, J., Qiu, X-LS, Carl, K.. (2022). An empirical Q-matrix validation method for the polytomous G-DINA model. Psychometrika, 87(2), 693724.CrossRefGoogle ScholarPubMed
de la Torre, J., van der Ark, L. A., Rossi, G.. (2018). Analysis of clinical data from a cognitive diagnosis modeling framework. Measurement and Evaluation in Counseling and Development, 51(4), 281296.CrossRefGoogle Scholar
DeCarlo, L. T.. (2011). On the analysis of fraction subtraction data: the DINA model, classification, class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 826.CrossRefGoogle Scholar
DiBello, L. V., Stout, W. F., Roussos, L. A.. (1995). Unified cognitive psychometric diagnostic assessment likelihood-based classification techniques. Hillsdale, NJ: Erlbaum Associates.Google Scholar
Fang, G., Liu, J., Ying, Z.. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84(1), 1940.CrossRefGoogle ScholarPubMed
Gu, Y., Xu, G.. (2019). Learning attribute patterns in high-dimensional structured latent attribute models. Journal of Machine Learning Research, 20(115), 158.Google Scholar
Gu, Y., Xu, G.. (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2), 468483.CrossRefGoogle ScholarPubMed
Gu, Y., Xu, G.. (2020). Partial identifiability of restricted latent class models. Annals of Statistics, 48(4), 20822107.CrossRefGoogle Scholar
Gu, Y., Xu, G.. (2021). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica, 31, 449472.Google Scholar
Haberman, S. J., von Davier, M., Lee, Y.-H.. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions. ETS Research Report Series,.CrossRefGoogle Scholar
Henson, R. A., Templin, J. L., Willse, J. T.. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191.CrossRefGoogle Scholar
Junker, B. W., Sijtsma, K.. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258272.CrossRefGoogle Scholar
Lee, Y.-S., Park, Y. S., Taylan, D.. (2011). A cognitive diagnostic modeling of attribute mastery in massachusetts, minnesota, and the u.s. national sample using the TIMSS 2007. International Journal of Testing, 11(2), 144177.CrossRefGoogle Scholar
Liu, J., Xu, G., Ying, Z.. (2013). Theory of self-learning Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-matrix. Bernoulli, 19(5A), 17901817.Google Scholar
Ma, W., de la Torre, J.. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253275.CrossRefGoogle ScholarPubMed
Maris, G., Bechger, T. M.. (2009). Equivalent diagnostic classification models. Measurement, 7, 4146.Google Scholar
O’Brien, K. L., Baggett, H. C., Brooks, W. A., Feikin, D. R., Hammitt, L. L., Higdon, M. M. et al., Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: The PERCH multi-country case-control study. The Lancet, (2019) 394, 757779.CrossRefGoogle Scholar
OECD. (1999) Measuring Student Knowledge and Skills: A New Framework for Assessment, Paris: Organisation for Economic Co-operation and Development.Google Scholar
OECD. (2006)Assessing Scientific, Reading and Mathematical Literacy: A Framework for PISA 2006, Paris: Organisation for Economic Co-operation and Development.Google Scholar
Rupp, A. A., Templin, J., Henson, R. A.. (2010). Diagnostic measurement: Theory, methods, and applications. New York City: Guilford Press.Google Scholar
Tatsuoka, C.. (2009). Diagnostic models as partially ordered sets. Measurement, 7, 4953.Google Scholar
Tatsuoka, K. K.. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345354.CrossRefGoogle Scholar
Templin, J. L., Henson, R. A.. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287305.CrossRefGoogle ScholarPubMed
von Davier, M.. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287307.CrossRefGoogle ScholarPubMed
von Davier, M.. (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67(1), 4971.CrossRefGoogle Scholar
Wang, S., Yang, Y., Culpepper, S. A., Douglas, J. A.. (2018). Tracking skill acquisition with cognitive diagnosis models: a higher-order, hidden Markov model with covariates. Journal of Educational and Behavioral Statistics, 43(1), 5787.CrossRefGoogle Scholar
Wu, Z., Deloria-Knoll, M., Zeger, S. L.. (2017). Nested partially latent class models for dependent binary data; estimating disease etiology. Biostatistics, 18(2), 200213.Google ScholarPubMed
Xu, G.. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45, 675707.CrossRefGoogle Scholar
Xu, G., Shang, Z.. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 12841295.CrossRefGoogle Scholar
Xu, G., Zhang, S.. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625649.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lin and Xu supplementary material

Lin and Xu supplementary material
Download Lin and Xu supplementary material(File)
File 633.7 KB