Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-29T10:25:56.853Z Has data issue: false hasContentIssue false

The socle of subshift algebras, with applications to subshift conjugacy

Published online by Cambridge University Press:  18 November 2024

Daniel Gonçalves
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-970 Florianópolis SC, Brazil ([email protected]) (corresponding author)
Danilo Royer
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-970 Florianópolis SC, Brazil ([email protected])

Abstract

We introduce the concept of ‘irrational paths’ for a given subshift and useit to characterize all minimal left ideals in the associated unital subshift algebra. Consequently, we characterize the socle as the sum of the ideals generated by irrational paths. Proceeding, we construct a graph such that the Leavitt path algebra of this graph is graded isomorphic to the socle. This realization allows us to show that the graded structure of the socle serves as an invariant for the conjugacy of Ott–Tomforde–Willis subshifts and for the isometric conjugacy of subshifts constructed with the product topology. Additionally, we establish that the socle of the unital subshift algebra is contained in the socle of the corresponding unital subshift C*-algebra.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abrams, G., Ara, P. and Siles Molina, M.. Leavitt path algebras, Volume 2191 of Lecture Notes in Mathematics. (Springer, London, 2017).Google Scholar
Abrams, G. and Rangaswamy, K. M.. Regularity conditions for arbitrary Leavitt path algebras. Algebr. Represent. Theory. 13 (2010), 319334.CrossRefGoogle Scholar
Abrams, G., Rangaswamy, K. M. and Siles Molina, M.. The socle series of a Leavitt path algebra. Israel J. Math. 184 (2011), 413435.CrossRefGoogle Scholar
Alberca Bjerregaard, P., Aranda Pino, G., Martín Barquero, D., Martín González, C. and Siles Molina, M.. Atlas of Leavitt path algebras of small graphs. J. Math. Soc. Japan. 66 (2014), 581611.CrossRefGoogle Scholar
Aranda Pino, G., Martín Barquero, D., Martín González, C. and Siles Molina, M.. The socle of a Leavitt path algebra. J. Pure Appl. Algebra 212 (2008), 500509.CrossRefGoogle Scholar
Aranda Pino, G., Martín Barquero, D., Martín González, C. and Siles Molina, M.. Socle theory for Leavitt path algebras of arbitrary graphs. Rev. Mat. Iberoam. 26 (2010), 611638.CrossRefGoogle Scholar
Bagio, D., Gil Canto, C., Gonçalves, D. and Royer, D.. The reduction theorem for algebras of one-sided subshifts over arbitrary alphabets. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 118 (2024), .Google Scholar
Bates, T. and Pask, D.. C$^*$-algebras of labelled graphs. J. Operator Theory 57 (2007), 207226.Google Scholar
Boava, G., de Castro, G. G., Gonçalves, D. and van Wyk, D.. C*-algebras of one-sided subshifts over arbitrary alphabets. Arxiv arXiv:2312.17644 [math.OA] (2023).CrossRefGoogle Scholar
Boava, G., de Castro, G. G., Gonçalves, D. and van Wyk, D.. Leavitt path algebras of labelled graphs. J. Algebra 629 (2023), 265306.CrossRefGoogle Scholar
Boava, G., de Castro, G. G., Gonçalves, D. and van Wyk, D. W.. Algebras of one-sided subshifts over arbitrary alphabets. Rev. Mat. Iberoam. 40 (2024), 10451088.CrossRefGoogle Scholar
Bonsall, F. F. and Duncan, J.. Complete normed algebras, Volume Band 80 of Ergebnisse der Mathematik und Ihrer Grenzgebiete [Results in Mathematics and related areas]. (Springer-Verlag, New York-Heidelberg, 1973).CrossRefGoogle Scholar
Brix, K. A. and Carlsen, T. M.. C$^*$-algebras, groupoids and covers of shift spaces. Trans. Amer. Math. Soc. Ser. B 7 (2020), 134185.CrossRefGoogle Scholar
Brown, J. H. and an Huef, A.. The socle and semisimplicity of a Kumjian-Pask algebra. Comm. Algebra 43 (2015), 27032723.CrossRefGoogle Scholar
Carlsen, T. M.. Cuntz–Pimsner $C^*$-algebras associated with subshifts. Int. J. Math. 19 (2008), 4770.CrossRefGoogle Scholar
Clark, L. O., Hazrat, R. and Rigby, S. W.. Strongly graded groupoids and strongly graded Steinberg algebras. J. Algebra 530 (2019), 3468.CrossRefGoogle Scholar
Cordeiro, L., Gillaspy, E., Gonçalves, D. and Hazrat, R.. Williams’ conjecture holds for meteor graphs. To Appear in Israel J. Math. (2024), arXiv:2304.05862 [math.RA].Google Scholar
Cortiñas, G. and Roozbeh, H.. Classification conjectures for Leavitt path algebras. Arxiv arXiv:2401.04262 [math.RA] (2024).CrossRefGoogle Scholar
Gonçalves, D. and Royer, D.. $(M+1)$-step shift spaces that are not conjugate to M-step shift spaces. Bull. Sci. Math. 139 (2015), 178183.CrossRefGoogle Scholar
Gonçalves, D. and Royer, D.. Ultragraphs and shift spaces over infinite alphabets. Bull. Sci. Math. 141 (2017), 2545.CrossRefGoogle Scholar
Gonçalves, D. and Royer, D.. Properties of the gradings on ultragraph algebras via the underlying combinatorics. J. Algebraic Combin. 58 (2023), 435451.CrossRefGoogle Scholar
Gonçalves, D. and Royer, D.. Irreducible representations of one-sided subshift algebras. arxiv:2306.1679 (2023).Google Scholar
Gonçalves, D., Sobottka, M. and Starling, C.. Sliding block codes between shift spaces over infinite alphabets. Math. Nachr. 289 (2016), 21782191.CrossRefGoogle Scholar
Gonçalves, D., Sobottka, M. and Starling, C.. Two-sided shift spaces over infinite alphabets. J. Aust. Math. Soc. 103 (2017), 357386.CrossRefGoogle Scholar
Lambek, J.. Lectures on Rings and modules, AMS Chelsea Publishing, Vol. 283 (Providence, Rhode Island, USA: American Mathematical Society, 1986), p. .Google Scholar
Lundström, P. and Öinert, J.. Strongly graded Leavitt path algebras. J. Algebra Appl. 21 (2022), .CrossRefGoogle Scholar
Ott, W., Tomforde, M. and Willis, P. N.. One-sided shift spaces over infinite alphabets, Volume 5 of New York Journal of Mathematics. NYJM Monographs. (State University of New York, University at Albany, Albany, NY, 2014).Google Scholar