Published online by Cambridge University Press: 27 December 2018
We examine the elliptic system given by
$$\left\{ {\matrix{ {-\Delta u = \lambda f(v)} \hfill & {{\rm in }\,\,\Omega ,} \hfill \cr {-\Delta v = \gamma f(u)} \hfill & {{\rm in }\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill & {{\rm on }\,\,\partial \Omega ,} \hfill \cr } } \right.$$
$$0 < \tau _-: = \mathop {\lim \inf }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les \tau _ + : = \mathop {\lim \sup }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les 2,$$
$$[P_{f}(\alpha,\tau_{-},\tau_{+}):=(2-\tau_{-})^{2} \alpha^{2}- 4(2-\tau_{+})\alpha+4(1-\tau_{+}).]$$