Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-28T12:10:23.676Z Has data issue: false hasContentIssue false

The two membranes problem in a regular tree

Published online by Cambridge University Press:  27 December 2024

Irene Gonzálvez*
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain ([email protected]) (corresponding author)
Alfredo Miranda
Affiliation:
Departamento de Matemáticas, FCEyN, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina ([email protected], [email protected])
Julio D. Rossi
Affiliation:
Departamento de Matemáticas, FCEyN, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina ([email protected], [email protected])
*
*Corresponding author.

Abstract

In this article, we study the two membranes problem for operators given in terms of a mean value formula on a regular tree. We show existence of solutions under adequate conditions on the boundary data and the involved source terms. We also show that, when the boundary data are strictly separated, the coincidence set is separated from the boundary and thus it contains only a finite number of nodes.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvarez, V., Rodríguez, J. M. and Yakubovich, D. V.. Estimates for nonlinear harmonic “measures” on trees. Michigan Math. J. 49 (2001), 4764.CrossRefGoogle Scholar
Azevedo, A., Rodrigues, J. F. and Santos, L.. The N-membranes problem for quasilinear degenerate systems. Inter. Free Bound. 7 (2005), 319337.CrossRefGoogle Scholar
Bjorn, A., Bjorn, J., Gill, J. T. and Shanmugalingam, N.. Geometric analysis on Cantor sets and trees. J. Reine Angew. Math. 725 (2017), 63114.CrossRefGoogle Scholar
Blanc, P. and Rossi, J. D.. Game theory and partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 31, (2019) ISBN 978-3-11-061925-6. ISBN 978-3-11-062179-2 (eBook).Google Scholar
Caffarelli, L., De Silva, D. and Savin, O.. The two membranes problem for different operators. Ann. l’Institut Henri Poincare C, Anal. Non Lineaire 34 (2017), 899932.CrossRefGoogle Scholar
Caffarelli, L., Duque, L. and Vivas, H.. The two membranes problem for fully nonlinear operators. Discr. Cont. Dyn. Syst. 38 (2018), 60156027.CrossRefGoogle Scholar
Carillo, S., Chipot, M. and Vergara-Caffarelli, G.. The N-membrane problem with nonlocal constraints. J. Math. Anal. Appl. 308 (2005), 129139.CrossRefGoogle Scholar
Chipot, M. and Vergara-Caffarelli, G.. The N-membranes problem. Appl. Math. Optim. 13 (1985), 231249.CrossRefGoogle Scholar
Del Pezzo, L. M., Frevenza, N. and Rossi, J. D.. Dirichlet-to-Neumann maps on trees. Potential Anal. 53 (2020), 14231447.CrossRefGoogle Scholar
Del Pezzo, L. M., Mosquera, C. A. and Rossi, J. D.. The unique continuation property for a nonlinear equation on trees. J. Lond. Math. Soc. 89 (2014), 364382.CrossRefGoogle Scholar
Del Pezzo, L. M., Mosquera, C. A. and Rossi, J. D.. Estimates for nonlinear harmonic measures on trees. Bull. Braz. Math. Soc. (N.S.) 45 (2014), 405432.CrossRefGoogle Scholar
Del Pezzo, L. M., Mosquera, C. A. and Rossi, J. D.. Existence, uniqueness and decay rates for evolution equations on trees. Port. Math. 71 (2014), 6377.CrossRefGoogle Scholar
Gonzálvez, I., Miranda, A. and Rossi, J. D.. Monotone iterations of two obstacle problems with different operators. J. Elliptic Parab. 10 (2014), 679709.CrossRefGoogle Scholar
Kaufman, R., Llorente, J. G. and Wu, J. -M.. Nonlinear harmonic measures on trees. Ann. Acad. Sci. Fenn. Math. 28 (2003), 279302.Google Scholar
Kaufman, R. and Wu, J. -M.. Fatou theorem of p-harmonic functions on trees. Ann. Probab. 28 (2000), 11381148.CrossRefGoogle Scholar
Lewicka, M.. A course on tug-of-war games with random noise, Introduction and Basic Constructions. Universitext Book Series (Springer, 2020).Google Scholar
Miranda, A., Mosquera, C. A. and Rossi, J. D.. Systems involving mean value formulas on trees, To Appear in Canadian Journal of Mathematics (CJM).Google Scholar
Peres, Y., Schramm, O., Sheffield, S. and Wilson, D.. Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009), 167210.CrossRefGoogle Scholar
Peres, Y. and Sheffield, S.. Tug-of-war with noise: a game theoretic view of the p-Laplacian. Duke Math. J. 145 (2008), 91120.CrossRefGoogle Scholar
Silvestre, L.. The two membranes problem. Comm. Part. Differ. Equ. 30 (2005), 245257.CrossRefGoogle Scholar
Sviridov, A. P.. Elliptic equations in graphs via stochastic games. Thesis (PhD) (University of Pittsburgh. ProQuest LLC, Ann Arbor, MI (2011)), .Google Scholar
Sviridov, A. P.. p-harmonious functions with drift on graphs via games. Electron. J. Differ. Equ. (2011), .Google Scholar
Vergara-Caffarelli, G.. Regolarita di un problema di disequazioni variazionali relativo a due membrane. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 50 (1971), 659662, Italian, with English summary.Google Scholar
Vivas, H.. The two membranes problem for fully nonlinear local and nonlocal operators. PhD Thesis dissertation (UT Austin (2018)), https://repositories.lib.utexas.edu/handle/2152/74361.Google Scholar