Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-05-02T20:15:46.279Z Has data issue: false hasContentIssue false

Equivariant parametrized topological complexity

Published online by Cambridge University Press:  26 November 2024

Navnath Daundkar*
Affiliation:
Department of Mathematics, Indian Institute of Science Education and Research, Pune, India ([email protected])

Abstract

In this paper, we define and study an equivariant analogue of Cohen, Farber and Weinberger’s parametrized topological complexity. We show that several results in the non-equivariant case can be extended to the equivariant case. For example, we establish the fibrewise equivariant homotopy invariance of the sequential equivariant parametrized topological complexity. We obtain several bounds on sequential equivariant topological complexity involving the equivariant category. We also obtain the cohomological lower bound and the dimension-connectivity upper bound on the sequential equivariant parametrized topological complexity. In the end, we use these results to compute the sequential equivariant parametrized topological complexity of equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving generalized projective product spaces.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angel, A., Colman, H., Grant, M. and Oprea, J.. Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity. Theory Appl. Categ. 35 (2020), 179195.Google Scholar
Basabe, I., González, J., Rudyak, Y. B. and Tamaki, D.. Higher topological complexity and its symmetrization. Algebr. Geom. Topol. 14 (2014), 21032124.CrossRefGoogle Scholar
Bayeh, M. and Sarkar, S.. Higher equivariant and invariant topological complexities. J. Homotopy Relat. Struct. 15 (2020), 397416.CrossRefGoogle Scholar
Berstein, I. and Ganea, T.. The category of a map and of a cohomology class. Fundam. Math. 50 (1962), 265279.CrossRefGoogle Scholar
Bredon, G. E.. Introduction to compact transformation groups. In Pure and applied mathematics, Vol. 46, (Academic Press. XIII, New York-London, 1972).Google Scholar
Cadavid-Aguilar, N., González, J., Gutiérrez, D., Guzmán-Sáenz, A. and Lara, A.. Sequential motion planning algorithms in real projective spaces: an approach to their immersion dimension. Forum Math. 30 (2018), 397417.CrossRefGoogle Scholar
Clapp, M. and Puppe, D.. Invariants of the Lusternik-Schnirelmann type and the topology of critical sets. Trans. Amer. Math. Soc. 298 (1986), 603620.CrossRefGoogle Scholar
Cohen, D. C., Farber, M. and Weinberger, S.. Topology of parametrized motion planning algorithms. SIAM J. Appl. Algebra Geom. 5 (2021), 229249.CrossRefGoogle Scholar
Cohen, D. C., Farber, M. and Weinberger, S.. Parametrized topological complexity of collision-free motion planning in the plane. Ann. Math. Artif. Intell. 90 (2022), 9991015.CrossRefGoogle Scholar
Cohen, F. R.. Introduction to configuration spaces and their applications. In Braids, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 19, (World Sci. Publishing, Hackensack, NJ, 2010).Google Scholar
Colman, H.. Equivariant LS-category for finite group actions. In Lusternik-SChnirelmann category and related topics (SOuth Hadley, MA, 2001), Contemporary Mathematics, Vol. 316, (American Mathematical Society, Providence, RI, 2002).Google Scholar
Colman, H. and Grant, M.. Equivariant topological complexity. Algebr. Geom. Topol. 12 (2012), 22992316.CrossRefGoogle Scholar
Daundkar, N.. Group actions and higher topological complexity of lens spaces. J. Appl. Comput. Topol. 8 (7) (2024), 20512067.CrossRefGoogle Scholar
Daundkar, N.. Sequential parametrized topological complexity of group epimorphisms. arXiv:2404.03757 (2024).Google Scholar
Daundkar, N., and Sarkar, S.. LS-category and topological complexity of several families of fibre bundles. Homol. Homotopy and Appl. 26 (2) (2024), 273295.CrossRefGoogle Scholar
Daundkar, N. and Singh, B.. Higher (equivariant) topological complexity of milnor manifolds. arXiv:2308.14138 (2023).Google Scholar
Davis, D. M.. Projective product spaces. J. Topol. 3 (2010), 265279.CrossRefGoogle Scholar
Dold, A.. Erzeugende der Thomschen Algebra. $\mathcal{N}$. Math. Z. 65 (1956), 2535.CrossRefGoogle Scholar
Fadell, E.. The equivariant Ljusternik-Schnirelmann method for invariant functionals and relative cohomological index theories. In Topological methods in nonlinear analysis, Sém. Math. Sup., Vol. 95, (Presses Univ. Montréal, Montreal, QC, 1985).Google Scholar
Fadell, E. and Neuwirth, L.. Configuration spaces. Math. Scand. 10 (1962), 111118.CrossRefGoogle Scholar
Fadell, E. R. and Husseini, S. Y.. Geometry and topology of configuration spaces, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
Farber, M.. Topological complexity of motion planning. Discrete Comput. Geom. 29 (2003), 211221.CrossRefGoogle Scholar
Farber, M., and Kumar Paul, A.. Sequential parametrized motion planning and its complexity. Topol. Appl. 321 (2022), .CrossRefGoogle Scholar
Farber, M., and Kumar Paul, A.. Sequential parametrized motion planning and its complexity, II. Topol. Appl. 331 (2023), .CrossRefGoogle Scholar
Farber, M., and Oprea, J.. Sequential parametrized topological complexity and related invariants. Algebr. Geom. Topol. 24 (3) (2022), 17551780.CrossRefGoogle Scholar
Farber, M., Tabachnikov, S. and Yuzvinsky, S.. Topological robotics: motion planning in projective spaces. Int. Math. Res. Not. (34) (2003), 18531870.CrossRefGoogle Scholar
Farber, M. and Weinberger, S.. Parametrized topological complexity of sphere bundles. Topol. Methods Nonlinear Anal. 61 (2023), 161177.Google Scholar
García-Calcines, J. M.. Formal aspects of parametrized topological complexity and its pointed version. J. Topol. Anal. 15 (2023), 11291148.CrossRefGoogle Scholar
González, J., Gutiérrez, B., Gutiérrez, D. and Lara, A.. Motion planning in real flag manifolds. Homol. Homotopy Appl. 18 (2016), .Google Scholar
Grant, M.. Symmetrized topological complexity. J. Topol. Anal. 11 (2019), 387403.CrossRefGoogle Scholar
İlhan, A. G.. (2011). Obstructions for constructing G-equivariant fibrations. http://hdl.handle.net/11693/15748Google Scholar
İlhan, A. G.. Obstructions for constructing equivariant fibrations. Algebr. Geom. Topol. 12 (2012), 13131330.CrossRefGoogle Scholar
James, I. M.. On category, in the sense of Lusternik–Schnirelmann. Topology. 17 (1978), 331348.CrossRefGoogle Scholar
Lyusternik, L. and Šnirelmann, L.. Méthodes topologiques dans les problèmes variationnels. Actualités Scientifiques et industrielles, vol. 188, Exposés sur l’Analyse mathéMatique et ses applications, vol.3, Vol. 42 (Presses Universitaires de France, Hermann, Paris, 1934).Google Scholar
Marzantowicz, W.. A G-Lusternik–Schnirelman category of space with an action of a compact Lie group. Topology. 28 (1989), 403412.CrossRefGoogle Scholar
Milnor, J.. On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds. Topology. 3 (1965), 223230.CrossRefGoogle Scholar
Murayama, M. and Shimakawa, K.. Universal equivariant bundles. Proc. Amer. Math. Soc. 123 (1995), 12891295.CrossRefGoogle Scholar
Rudyak, Y. B.. On higher analogs of topological complexity. Topol. Appl. 157 (2010), 916920.CrossRefGoogle Scholar
Sarkar, S. and Zvengrowski, P.. On generalized projective product spaces and Dold manifolds. Homol. Homotopy Appl. 24 (2022), 265289.CrossRefGoogle Scholar
Spanier, E. H.. Algebraic topology (Springer-Verlag, New York-Berlin, 1981) corrected reprint.CrossRefGoogle Scholar
tom Dieck, T.. Faserbündel mit Gruppenoperation. Arch. Math. 20 (1969), 136143.CrossRefGoogle Scholar
Švarc, A. S.. The genus of a fiber space. Dokl. Akad. Nauk SSSR (N.S.). 119 (1958), 219222.Google Scholar
Waner, S.. Equivariant fibrations and transfer. Trans. Amer. Math. Soc. 258 (1980), 369384.CrossRefGoogle Scholar