Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-05T01:55:28.205Z Has data issue: false hasContentIssue false

Positive Weathering Feedback Compensates Carbonates at Shallow Ocean Depths

Published online by Cambridge University Press:  16 October 2024

Hakim Kaustubh*
Affiliation:
KU Leuven, Institute of Astronomy, Celestijnenlaan 200D, 3001 Leuven, Belgium Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium

Abstract

Continental silicate weathering and seafloor carbonate precipitation are key steps in the carbonate-silicate cycle to draw down CO2. Contrary to the classic understanding of negative feedback, silicate weathering can exhibit positive feedback at high temperatures. Taking into account this positive feedback, the compensation depth (CCD) in exoplanet oceans becomes shallower, implying a potential instability in the carbonate-silicate cycle at high temperatures.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Berner, R. A., Lasaga, A. C., & Garrels, R. M. 1983, American Journal of Science, 283, 641. doi: 10.2475/ajs.283.7.641 CrossRefGoogle Scholar
Broecker, W. S. & Peng, T.-H. 1987, Global Biogeochemical Cycles, 1, 15. doi: 10.1029/GB001i001p00015 CrossRefGoogle Scholar
Catling, D. C. & Zahnle, K. J. 2020, Science Advances, 6, eaax1420. doi: 10.1126/sciadv.aax1420 CrossRefGoogle Scholar
Hakim, K., Bower, D. J., Tian, M., et al. 2021, Planetary Science Journal, 2, 49. doi: 10.3847/PSJ/abe1b8 Google Scholar
Hakim, K., Tian, M., Bower, D. J., et al. 2023, Astrophysical Journal Letters, 942, L20. doi: 10.3847/2041-8213/aca90c CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108. doi: 10.1006/icar.1993.1010 CrossRefGoogle Scholar
Krissansen-Totton, J., Arney, G. N., & Catling, D. C. 2018, Proceedings of the National Academy of Science, 115, 4105. doi: 10.1073/pnas.1721296115 CrossRefGoogle Scholar
Maher, K. & Chamberlain, C. P. 2014, Science, 343, 1502. doi: 10.1126/science.1250770 CrossRefGoogle Scholar
Sagan, C. & Mullen, G. 1972, Science, 177, 52. doi: 10.1126/science.177.4043.52 CrossRefGoogle Scholar
Sleep, N. H. & Zahnle, K. 2001, Journal of Geophysical Research, 106, 1373. doi: 10.1029/2000JE001247 CrossRefGoogle Scholar
Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, Journal of Geophysical Research, 86, 9776. doi: 10.1029/JC086iC10p09776 CrossRefGoogle Scholar
Zeebe, R. E. & Westbroek, P. 2003, Geochemistry, Geophysics, Geosystems, 4, 1104. doi: 10.1029/2003GC000538 CrossRefGoogle Scholar