Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-25T23:30:08.875Z Has data issue: false hasContentIssue false

Crystal structure and Hirshfeld surface analysis of pinaverium bromide dihydrate

Published online by Cambridge University Press:  31 October 2024

Dezhen Chen
Affiliation:
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Wangting Zhou
Affiliation:
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Yujing Wei
Affiliation:
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Chenghan Zhuang
Affiliation:
Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd, Dongyang 322118, People's Republic of China
Yazheng He
Affiliation:
Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd, Dongyang 322118, People's Republic of China
Xiaoli Li
Affiliation:
Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd, Dongyang 322118, People's Republic of China
Kaibo Li
Affiliation:
Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd, Dongyang 322118, People's Republic of China
Zhaoxia Zhang*
Affiliation:
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Guoqing Zhang
Affiliation:
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

In the present study, we have discovered and identified a new crystalline form of pinaverium bromide, pinaverium bromide dihydrate (C26H41BrNO4⋅Br⋅2H2O), whose single crystals can be obtained by recrystallization from a mixture of water and acetonitrile at room temperature. The obtained crystals were characterized by X-ray single-crystal diffraction, and their crystal structure was also solved based on X-ray single-crystal diffraction data. The results show that the final pinaverium bromide dihydrate model contains an asymmetric unit of one pinaverium bromide (C26H41Br2NO4) molecule and two water molecules that combine with the bromine ion through O–H⋯O and O–H⋯Br hydrogen bonds. Then, the adjacent pinaverium bromide dihydrates are linked by O–H⋯O, O–H⋯Br, and C–H⋯O hydrogen bonds. On the other hand, the experimentally obtained X-ray powder diffraction pattern is in good agreement with the simulated diffraction pattern from their single-crystal data, confirming the correctness of the crystal structure. Hirshfeld surface analysis was employed to understand and visualize the packing patterns, indicating that the H⋯H interaction is the main acting force in the crystal stacking of pinaverium bromide dihydrate.

Type
New Diffraction Data
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Annaházi, A., Róka, R., Rosztóczy, A., and Wittmann, T.. 2014. “Role of Antispasmodics in the Treatment of Irritable Bowel Syndrome.” World Journal of Gastroenterology 20 (20): 6031–43.CrossRefGoogle ScholarPubMed
Bor, S., Lehert, P., Chalbaud, A., and Tack, J.. 2021. “Efficacy of Pinaverium Bromide in the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis.” Therapeutic Advances in Gastroenterology 14: 112.CrossRefGoogle ScholarPubMed
Bruker 2016. Program name(s). Madison, WI, Bruker AXS.Google Scholar
Christen, M. O. 1990. “Action of Pinaverium Bromide, a Calcium-Antagonist, on Gastrointestinal Motility Disorders.” General Pharmacology 21 (6): 821–5.CrossRefGoogle ScholarPubMed
Dai, Y., Liu, J. X., Li, J. X., and Xu, Y. F.. 2003. “Effect of Pinaverium Bromide on Stress-Induced Colonic Smooth Muscle Contractility Disorder in Rats.” World Journal of Gastroenterology 9 (3): 557–61.CrossRefGoogle ScholarPubMed
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H.. 2009. “OLEX2: A Complete Structure Solution, Refinement and Analysis Program.” Journal of Applied Crystallography 42: 339–41.CrossRefGoogle Scholar
Froguel, E., Chaussade, S., Roche, H., Fallet, M., Couturier, D., and Guerre, J.. 1990. “Effects of an Intestinal Smooth Muscle Calcium Channel Blocker (Pinaverium Bromide) on Colonie Transit Time in Humans.” Neurogastroenterology & Motility 2 (3): 176–9.CrossRefGoogle Scholar
Jayatilaka, D., Wolff, S. K., Grimwood, D. J., McKinnon, J. J., and Spackman, M. A.. 2006. “Crystalexplorer: A Tool for Displaying Hirshfeld Surfaces and Visualising Intermolecular Interactions in Molecular Crystals.” Acta Crystallographica Section A: Foundations and Advances 62: s90.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A.. 2019. “Mercury 4.0: From Visualization to Analysis, Design and Prediction.” Journal Applied Crystallography 53: 226–35.CrossRefGoogle Scholar
MDI. 2019. JADE Version 9.6. Livermore, CA, Materials Data.Google Scholar
Mendoza, J. H. Q., Aparicio, A. P., and Henao, J. A.. 2021. “Powder Diffraction Data and Preliminary Spectroscopic and Thermal Characterization of Pinaverium Bromide, a Drug Used for Functional Gastrointestinal Disorders.” Powder Diffraction 36 (1): 20–4.CrossRefGoogle Scholar
Nikpour, M., Mirzaei, M., Chen, Y. G., Kaju, A. A., and Bakavoli, M.. 2009. “Contribution of Intermolecular Interactions to Constructing Supramolecular Architecture: Synthesis, Structure and Hirshfeld Surface Analysis of a New Hybrid of Polyoxomolybdate and ((1H-tetrazole-5-yl) Methyl) Morpholine.” Inorganic Chemistry Communications 12 (9): 879882.CrossRefGoogle Scholar
Sheldrick, G. M. 2015a. “SHELXT – Integrated Space-Group and crystal-Structure Determination.” Acta Crystallographica Section A Foundations and Advances 71: 38.CrossRefGoogle ScholarPubMed
Sheldrick, G. M. 2015b. “Crystal Structure Refinement with SHELXL.” Acta Crystallographica Section C Structural Chemistry 71: 38.CrossRefGoogle ScholarPubMed
Spackman, M. A., and McKinnon, J. J.. 2002. “Fingerprinting Intermolecular Interactions in Molecular Crystals.” CrystEngComm 4 (66): 378–92.CrossRefGoogle Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., and Spackman, M. A.. 2021. “Crystalexplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals.” Journal of Applied Crystallography 54: 10061011.CrossRefGoogle ScholarPubMed
Sundareswaran, S., and Karuppannan, S.. 2020. “Hirshfeld Surface Analysis of Stable and Metastable Polymorphs of Vanillin.” Crystal Research and Technology 55 (11): 2000083.CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material
Download Chen et al. supplementary material(File)
File 1.8 MB