Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-24T20:11:31.392Z Has data issue: false hasContentIssue false

Seed set by artificial pollination and seed storage under cryogenic, freezer and dry conditions in the medicinal plant Uncaria rhynchophylla

Published online by Cambridge University Press:  15 November 2024

Keita Endoh
Affiliation:
Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki 319-1301, Japan
Ken-ichi Konagaya
Affiliation:
Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki 319-1301, Japan
Michinari Matsushita
Affiliation:
Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki 319-1301, Japan
Toru Taniguchi*
Affiliation:
Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki 319-1301, Japan
*
Corresponding author: Toru Taniguchi; Email: [email protected]

Abstract

Uncaria rhynchophylla (Rubiaceae), a woody liana with significant medicinal value, has been used as a traditional Japanese and Chinese medicine. While effective seed production is required for breeding and efficient seedling production, the physiology of sexual reproduction remains largely unknown in this species. Therefore, we first observed the flowering behaviour, and next attempted artificial pollination using flowering individuals in a greenhouse. In this study it became clear that this species sets seeds by allogamy, but not by autogamy. The obtained seeds showed about a 90% germination rate. We also examined seed desiccation tolerance and storage conditions which are important to preserve the genetic resources. Seeds of this species were found to have a characteristic of the orthodox type, having high desiccation tolerance. Seeds after 6 months of storage at + 22, −20 and −160°C showed comparable germination rates to the seeds before storage.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

These authors contributed equally to this study.

References

Bonner, FT (1990) Storage of seeds: potential and limitations for germplasm storage. Forest Ecology and Management 35, 3543.CrossRefGoogle Scholar
Chmielarz, P (2010) Cryopreservation of conditionally dormant orthodox seeds of Betula pendula. Acta Physiologiae Plantarum 32, 591596.CrossRefGoogle Scholar
Ellis, RH, Hong, TD and Robert, EH (1990) An intermediate category of seed storage behavior? І. Coffee. Journal of Experimental Botany 41, 11671174.CrossRefGoogle Scholar
Endoh, K, Itahana, N, Matsushita, M, Yamada, H and Ubukta, M (2021) Seed production and storage for endangered Morus boninensis using an ex situ living collection. Plant Biology 23, 956961.CrossRefGoogle Scholar
Funamoto, D and Sugiura, S (2016) Settling moths as potential pollinators of Uncaria rhynchophylla (Rubiaceae). European Journal of Entomology 113, 497501.CrossRefGoogle Scholar
Hayati, PKD, Fitri, AW and Fauza, H (2020) Flowering characterization and its relation to the type of pollination on gambier (Uncaria gambir (Hunter) Roxb.). IOP Conference Series: Earth and Environmental Science 583, 01200.Google Scholar
Honório, ICG, Bertoni, BW, Telles, MPC, Braga, RDS, França, SC, Coppede, JDS, Correa, VSC, Diniz Filho, JAF and Pereira, AMS (2017) Genetic and chemical diversity of Uncaria tomentosa (Willd. ex. Schult.) DC. in the Brazilian Amazon. PLoS One 12, e0177103.CrossRefGoogle Scholar
Howell, GJ, Slater, AT and Knox, RB (1993) Secondary pollen presentation in Angiosperms and its biological significance. Australian Journal of Botany 41, 417438.CrossRefGoogle Scholar
Ishii, K, Takata, N and Taniguchi, T (2014) Micropropagation of Uncaria rhynchophylla – a medicinal woody plant. Acta Horticulturae 1055, 353356.CrossRefGoogle Scholar
Justice, OL and Bass, LN (1978) Principles and Practices of Seed Storage. Washington, D. C.: US Department of Agriculture.Google Scholar
Kawazoe, S, Kobayashi, S, Mizukami, H and Ohhashi, H (1988) Cultivation and breeding of Uncaria rhynchophylla (Miq.) Miquel (1): propagation methods. The Japanese Journal of Pharmacognosy 42, 197203, (Written in Japanese with English summary).Google Scholar
Kawazoe, S, Kobayashi, S, Mizukami, H and Ohhashi, H (1990) Cultivation and breeding of Uncaria rhynchophylla (Miq.) Miquel (4): germination characteristics of Uncaria rhynchophylla seed. The Japanese Journal of Pharmacognosy 44, 240244, (Written in Japanese with English summary).Google Scholar
Kolomeitseva, GL, Nikishina, TV, Babosha, AV, Ryabchenko, AS and Vysotskaya, ON (2022) Morphophysiology and cryopreservation of seeds of Dendrobium nobile Lindl. (Orchidaceae) at different stages of development. Acta Physiologiae Plantarum 44, 36.CrossRefGoogle Scholar
Li, D and Prichard, HW (2009) The science and economics of ex situ plant conservation. Trends in Plant Science 14, 614621.CrossRefGoogle ScholarPubMed
Mikage, M and Endo, H (2008) Historical studies about medicinal part of Chinese crude drug “Uncaria hook”. Kampo Medicine 59, 2534, (Written in Japanese with English summary).CrossRefGoogle Scholar
Mounce, R, Smith, P and Brockington, S (2017) Ex situ conservation of plant diversity in the world's botanic gardens. Nature Plants 3, 795802.CrossRefGoogle ScholarPubMed
O'Donnell, K and Sharrock, S (2017) The contribution of botanic gardens to ex situ conservation through seed banking. Plant Diversity 39, 373378.CrossRefGoogle ScholarPubMed
Popova, EV, Kim, DH, Han, SH, Molchanova, E, Pritchard, HW and Hong, YP (2013) Systematic overestimation of Salicaceae seed survival using radicle emergence in response to drying and storage: implications for ex situ seed banking. Acta Physiologiae Plantarum 35, 30153025.CrossRefGoogle Scholar
Pritchard, HW and Nadarajan, J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In Reed, BM (ed.), Plant Cryopreservation: A Practical Guide. New York: Springer, pp. 485501.CrossRefGoogle Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rizki, M, Dwipa, I and Zainal, A (2020) Self-pollinated (Geinotogami) of Uncaria gambir (Hunter) Roxb. Type Udang. Asian Journal of Advances in Agricultural Research 14, 17.CrossRefGoogle Scholar
Roberts, EH (1973) Predicting the storage life of seeds. Seed Science and Technology 1, 499514.Google Scholar
Shi, W, Kitaoka, F, Doui, M, Miyake, K, Sasaki, Y, Kakiuchi, N and Mikage, M (2012) Quality evaluation of Chotoko-Local and specific variations in the alkaloid contents of Uncaria plants. Journal of Traditional Medicines 29, 6373.Google Scholar
Smith, RD, Dickie, JB, Linington, SH, Pritchard, HW and Probert, RJ (2003) Seed Conservation: Turning Science Into Practice. London: Royal Botanic Gardens, Kew.Google Scholar
Yamamoto, Y, Isozaki, T, Kitamaki, Y, Kurata, K, Taira, M, Takeda, O, Yamaguchi, Y and Sasaki, H (2023) Survey on crude drug usage in Japan (3). The Japanese Journal of Pharmacognosy 77, 2442, (Written in Japanese with English summary).Google Scholar
Zainal, A, Anwar, A and Lopita, S (2020) Identification of gambier plant [Uncaria gambir [Hunter] Roxb] pollination system. IOP Conference Series: Earth and Environmental Science 497, 012009.CrossRefGoogle Scholar
Zhu, S, Li, Q, Chen, S, Wang, Y, Zhou, L, Zeng, C and Dong, J (2018) Phylogenetic analysis of Uncaria species based on internal transcribed spacer (ITS) region and ITS2 secondary structure. Pharmaceutical Biology 56, 548558.CrossRefGoogle ScholarPubMed
Supplementary material: File

Endoh et al. supplementary material

Endoh et al. supplementary material
Download Endoh et al. supplementary material(File)
File 60.1 MB