Hostname: page-component-5f56664f6-6wzj7 Total loading time: 0 Render date: 2025-05-07T07:44:29.210Z Has data issue: false hasContentIssue false

Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology

Published online by Cambridge University Press:  10 July 2012

J. P. DUBEY*
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Natural Resources Institute, Animal Parasitic Diseases Laboratory, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA
E. G. LAGO
Affiliation:
Department of Pediatrics/Neonatology, Pontifícia Universidade Católica do Rio Grande do Sul School of Medicine, Av. Ipiranga 6690, CEP 90610-000, Porto Alegre, RS, Brazil
S. M. GENNARI
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270, São Paulo, SP, Brazil
C. SU
Affiliation:
Department of Microbiology, the University of Tennessee, Knoxville, TN 37996, USA
J. L. JONES
Affiliation:
Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., MS A-06, Atlanta, GA 30333, USA
*
*Corresponding author: USDA, ARS, ANRI, APDL, BARC-East, Building 1001, Beltsville, MD 20705, USA. Tel: +1 301 504 8128. Fax: +1 301 504 9222. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Summary

Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and animals in Brazil. The burden of clinical toxoplasmosis in humans is considered to be very high. The high prevalence and encouragement of the Brazilian Government provides a unique opportunity for international groups to study the epidemiology and control of toxoplasmosis in Brazil. Many early papers on toxoplasmosis in Brazil were published in Portuguese and often not available to scientists in English-speaking countries. In the present paper we review prevalence, clinical spectrum, molecular epidemiology, and control of T. gondii in humans and animals in Brazil. This knowledge should be useful to biologists, public health workers, veterinarians, and physicians. Brazil has a very high rate of T. gondii infection in humans. Up to 50% of elementary school children and 50–80% of women of child-bearing age have antibodies to T. gondii. The risks for uninfected women to acquire toxoplasmosis during pregnancy and fetal transmission are high because the environment is highly contaminated with oocysts. The burden of toxoplasmosis in congenitally infected children is also very high. From limited data on screening of infants for T. gondii IgM at birth, 5–23 children are born infected per 10 000 live births in Brazil. Based on an estimate of 1 infected child per 1000 births, 2649 children with congenital toxoplasmosis are likely to be born annually in Brazil. Most of these infected children are likely to develop symptoms or signs of clinical toxoplasmosis. Among the congenitally infected children whose clinical data are described in this review, several died soon after birth, 35% had neurological disease including hydrocephalus, microcephaly and mental retardation, 80% had ocular lesions, and in one report 40% of children had hearing loss. The severity of clinical toxoplasmosis in Brazilian children may be associated with the genetic characteristics of T. gondii isolates prevailing in animals and humans in Brazil.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

INTRODUCTION

Brazil is a large country with a human population of more than 190 million, and a booming economy. It is divided in to 26 states and a Federal district (Fig. 1). Most of the population is concentrated in the south with 41% of the population in the state of São Paulo. We have used abbreviated names of states in the following review; full names with human population are given in Fig. 1. We review the current status of Toxoplasma gondii infection in humans and animals. We have attempted to incorporate all published reports available to us on natural T. gondii infections, especially papers in Portuguese. We consulted original papers because in many instances information online was not correct. Detailed historical, serological, parasitological, clinical and genetic information on T. gondii infections in humans and other animals are summarized in Tables throughout the review.

Fig. 1. Map of Brazil with 5 regions and distribution of human population, and sources of Toxoplasma gondii isolates genotyped. Figures in parenthesis are millions of people and % of the total population. State abbreviation—(population million, %): AC – Acre (0·7, 0·38%), AL – Alagoas (3·1, 1·64%), AM – Amazonas (3·4, 1·83%), AP – Amapá (0·6, 0·35%), BA – Bahia (14·0, 7·35%), CE – Ceará (8·4, 4·43%), DF – Distrito Federal (2·5,1·35%), ES – Espírito Santo (3·5, 1·84%), GO – Goiás (6·0, 3·15%), MA – Maranhão (6·5, 3·45%) MS – Mato Grosso do Sul (2·4, 1·28%) MG – Minas Gerais (19·5, 10·27%), MT – Mato Grosso (3·0, 1·59%) PA – Pará (7·5, 3·97%), PB – Paraíba (3·7, 1·97%), PE – Pernambuco (8·7, 4·61%), PI – Piauí (3·1, 1·63%), PR – Paraná (10·4, 5·48%), RN – Rio Grande do Norte (3·2, 1·66%), RJ – Rio de Janeiro (15·9, 8·38%), RO – Rondônia (1·5, 0·82%), RR – Roraima (0·4, 0·24%), RS – Rio Grande do Sul (10·6, 5·60%), SC – Santa Catarina (6·2, 3·28%) SE – Sergipe (2·0, 1·08%) SP – São Paulo (41·2, 21·63%) TO – Tocantins (1·3, 0·73%).

HISTORY

The parasite now called Toxoplasma gondii and the disease it causes called toxoplasmosis were first noted in 1908 in the rodent Ctenodactylus gundi in Tunisia by Nicolle and Mancaeux (Reference Nicolle and Manceaux1908, Reference Nicolle and Manceaux1909), and in the domestic rabbit (Oryctolagus cuniculus) in Brazil by Splendore (Reference Splendore1908). Dr Alfonso Splendore was a physician immigrant from Italy (Splendore, Reference Splendore1908, translated in 2009 into English). It is a remarkable coincidence that this disease was first recognized in laboratory animals and was first thought to be Leishmania by both groups of investigators. The parasite was named Toxoplasma gondii by Nicolle and Manceaux (Reference Nicolle and Manceaux1909).

Congenital toxoplasmosis was probably first recognized in Brazil in 1927 by Carlos Bastos Magarinos Torres (Reference Torres1927) who performed an autopsy on a 2-day-old girl in Rio de Janeiro. The child was born at term and had generalized muscular twitching and convulsions soon after birth. Predominant lesions were meningo-encephalomyelitis, myocarditis and myositis. Numerous protozoal bodies were found in histological sections of the central nervous system, heart, skeletal muscles, and subcutaneous tissue. Torres (Reference Torres1927) named the parasite Encephalitozoon chagasi. In retrospect the lesions and the morphology of the parasite are indicative of toxoplasmosis.

The first proven case of congenital toxoplasmosis was described by Drs Wolf, Cowen, and Page (Reference Wolf, Cowen and Paige1939) in a Caesarian-derived infant on 23 May 1938 at the Babies Hospital, New York, USA. Guimarães (Reference Guimarães1943) extensively reviewed worldwide reports of toxoplasmosis in humans and first described confirmed congenital toxoplasmosis in a Brazilian 14-month-old girl. She was born with hydrocephalus, suffered convulsions and ocular tremor, and subsequently radiographical examination revealed intracerebral calcification. The diagnosis was confirmed by bioassay in mice and guinea pigs inoculated with cerebro-spinal fluid (CSF) from the child. The strain of T. gondii from the child was virulent for dogs, pigeons, mice, rabbits, and guinea pigs. Guimarães (Reference Guimarães1943) also reported acute fatal toxoplasmosis in an 18-year-old Brazilian male from rural Rio de Janeiro. This man had fever, mononucleosis, headache, paresis of lower limbs, dysphasia, dyspnea, and died after an illness of 37 days. A post-mortem examination revealed pericarditis, hepatitis, splenitis, nephritis, and bronchopneumonia. Toxoplasma gondii stages were seen in sections of several organs including encephalitic lesions in the brain. The histological picture was typical of recently acquired acute toxoplasmosis. Alencar and Schäffer (Reference Alencar and Schäffer1971) histologically confirmed fatal congenital toxoplasmosis in 2 children in Rio de Janeiro. A few landmarks of the history of toxoplasmosis in Brazil are given in Table 1 and also reported by de Souza et al. (Reference de Souza and Casella2009), Melamed (Reference Melamed2009) and Fialho et al. (Reference Fialho, Teixeira and de Araujo2009).

Table 1. Historical landmarks of Toxoplasma gondii and toxoplasmosis in Brazil

TOXOPLASMOSIS IN HUMANS

Prevalence of T. gondii infection

The discovery of a novel and specific serological test, the dye test, by Sabin and Feldman (Reference Sabin and Feldman1948) made it possible to conduct population-based surveys for this parasite. Different serological techniques used in Brazilian studies and their abbreviation are listed in Table S1 (online version only). In many instances commercial test kits were used and the manufacturers have changed over time. Cut-off values for serological tests are listed wherever the authors provided the information. Details of in-house tests are not listed in Table S1 or any subsequent tables.

Reports of serological surveys in Brazilians are summarized in Table 2. Among these reports, the study based on military recruits is most noteworthy because results could be compared with prevalence data in the USA (Feldman, Reference Feldman1965; Lamb and Feldman, Reference Lamb and Feldman1968; Walls and Kagan, Reference Walls and Kagan1967; Walls et al. Reference Walls, Kagan and Turner1967). In this survey, sera were collected from young adult males (18–21 years old) in Brazil and the USA and sera from both countries were deposited at a World Health Organization Center in the USA where they were tested in an identical manner in 2 US laboratories (Feldman's lab [co-inventor of the dye test], and the Centers for Disease Control [CDC], Atlanta, Georgia). Results indicated that the seroprevalence of T. gondii was (and still is, Dubey, Reference Dubey2010a) 4 times (56% versus 13%) higher in Brazil than in the USA, and the magnitude of antibody titres were also higher (27% versus 1% at a titre of 1:256) in Brazil than in the USA. Results based on the dye test are shown in Table S2 (online version only). Similar results were obtained with the IHA test conducted at CDC on sera from both countries (Walls and Kagan, Reference Walls and Kagan1967; Walls et al. Reference Walls, Kagan and Turner1967); seroprevalence at IHA titre of 1:64 was 56·4% (Brazil) versus 24·4% (USA). Such a direct comparison of seroprevalence of T. gondii among countries has never been made elsewhere.

Table 2. Serological prevalence of Toxoplasma gondii in the general population in Brazil

Serological prevalence data in children are summarized in Table 3. Up to 32% of 0–5 year olds, 19·5–59% of 6–10 year olds, and 28·4–84·5% of 11–15 year old children in Brazil were seropositive (Table 3). Limited data indicate that in certain areas approximately 50% of pre-teenage children have been exposed to the parasite (Table 3). Among these reports, Jamra and Guimarães (Reference Jamra and Guimarães1981) provided seroprevalence data in 450 children, 0–15 years old, from a health centre in São Paulo. The percentages of seropositives were: 53·3% in children <1 year old, 0% in 2–3 year olds, 13·3% in 3–4 year olds, and 10% in 4–5 year olds, reaching to 43·3% in 15 year olds (Table 3). Seropositivity in infants <1 year old was attributed to antibodies transferred from their infected mother. Toxoplasma gondii antibodies were found in 4 of 30 (13·3%) 3–4 year old children but not in 2–3 year old children. In isolated Amerindians of Mato Grosso state, 6 of 12 children, 6–9 years old, were seropositive (Amendoeira et al. Reference Amendoeira, Sobral, Teva, de Lima and Klein2003).

Table 3. Serological prevalence of Toxoplasma gondii antibodies in children in Brazil

a 0 to 9-year-old.

b 27·2% in 756 7-year-olds, 41·7% in 115 8 to 9-year olds, 31·1% in 86 10-year-olds.

c 4 to 11-year-old.

d Data in Table supplied by authors. Published data were: 13·7% of 459 in 6-year-olds, 15·5% in 419 6 to 7-year-olds, and 25·1% in 339 8 to11-year-olds.

e Children were 1–9 years old.

f Cut-off: average absorbance reading obtained with 15 negative control sera plus 3 standard deviations.

g 11 to 20-year-old.

h Personal communication to E. Lago.

i 12 to14-year-old.

Very high (36–92%) seroprevalences were found in pregnant women (Table 4). These data indicate that seroprevalence of T. gondii in children and in pregnant women in Brazil is one of the highest worldwide (Dubey and Beattie, Reference Dubey and Beattie1988; Tenter et al. Reference Tenter, Heckeroth and Weiss2000; Dubey, Reference Dubey2010a).

Viable T. gondii was isolated from the tonsils of asymptomatic humans (Jamra et al. Reference Jamra, Deane, Mion and Guimarães1971; Amendoeira and Coutinho, Reference Amendoeira and Coutinho1982).

Table 4. Serological prevalence of Toxoplasma gondii in pregnant/delivering, or child-bearing aged women in Brazil

a Antenatal clinics.

b NS: Not stated, as recommended by the manufacturer.

c Personal communication to E.Lago.

Congenital toxoplasmosis in children

Based on one report, ocular toxoplasmosis in congenitally infected children in Brazil was more severe than in children in Europe (Gilbert et al. Reference Gilbert, Freeman, Lago, Bahia-Oliveira, Tan, Wallon, Buffolano, Stanford and Petersen2008). This conclusion was based on comparison of ocular lesions in 30 children in Brazil with 281 children in Europe using similar methodology. In these 30 Brazilian children, the lesions in the eyes were more extensive than in the European children and more likely to involve the area of the retina affecting the central vision, in spite of the fact that most of the Brazilian children had been treated for toxoplasmosis for 12 months (Gilbert et al. Reference Gilbert, Freeman, Lago, Bahia-Oliveira, Tan, Wallon, Buffolano, Stanford and Petersen2008). This study concluded that the Brazilian children had a 5 times higher risk of severe toxoplasmosis than children in Europe. In another report, the risk of intracranial lesions detected by computed tomography (CT) scan was much higher in Brazilian children than in children in Europe (The SYROCOT, 2007). Some of these differences are thought to be related to the genetic makeup of the T. gondii strains in humans in Brazil but direct evidence for this hypothesis is lacking and difficult to obtain. However, this subject is intriguing. Perhaps further studies using a larger sample size as well as basic studies concerning pathogenesis of infections caused by different isolates may lead to further insight concerning the observations above. In this respect, we summarize published information on prevalence, and severity of congenital toxoplasmosis in Brazil.

An estimate of incidence or prevalence, and clinically manifest neonatal toxoplasmosis may be obtained from reports of observed cases, calculations based on the infection rate during pregnancy, and screening of children at birth. In the present review, we have listed all surveys in pregnant women and serological methods used. There is only limited information on the validity of commercial kits used, especially for the detection of IgM worldwide (Wilson et al. Reference Wilson, Remington, Clavet, Varney, Press, Ware, Herman, Shively, Simms, Hansen, Gaffey, Nutter, Langone, McCracken and Staples1997; Calderaro et al. Reference Calderaro, Picerno, Peruzzi, Gorrini, Chezzi and Dettori2008; Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011); some of these kits were also used for testing sera of Brazilian women and children. However, for the past 2 decades, reagents and manufacturers of the commercial products have changed. Additionally, the performance of kits used for diagnosis of infections with Brazilian strains of the parasite has not been studied, and could be very different from results in other countries in terms of sensitivity, specificity, and positive predictive value. The accuracy of some of the commercial diagnostic kits, especially for the detection of IgM antibodies, is unsatisfactory (Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). There is no national reference laboratory for T. gondii testing in Brazil.

Congenital toxoplasmosis detected by prenatal screening

There are very few reports of prenatal screening in Brazil. In a study of 2513 consecutive peri-parturient women at a hospital in Porto Alegre, RS, congenital toxoplasmosis was diagnosed in 4 infants (Lago et al. Reference Lago, de Carvalho, Jungblut, da Silva and Fiori2009b). Of these women, 1667 (67·3%), were already seropositive before pregnancy and thus unlikely to deliver congenitally infected children (Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). In the 810 susceptible women, 3 infected infants were identified through testing of the mother at delivery, and 1 fetus was found infected during the second trimester of gestation; this child had hydrocephalus on fetal ultrasound and hepato-splenomegaly, microphthalmia, and retinochoroiditis at birth. This child had severe mental retardation at 5 years of age. The second child was asymptomatic at birth but had hepatomegaly when 3 weeks old. The other 2 also had retinochoroiditis. Fetal toxoplasmosis was diagnosed by polymerase chain reaction (PCR) on amionic fluid in 12 of 72 women with acute toxoplasmosis who were followed during pregnancy at a hospital in Belo Horizonte (de Faria Couto and Leite, Reference de Faria Couto and Leite2004). Ultrasound examination was performed fortnightly and children were followed clinically for up to 1 year. Eight fetuses had signs of toxoplasmosis with bilateral ventricular enlargements, some accompanied by lesions in other organs; of these, 4 fetuses were stillborn, and 3 had retinochoroiditis with neurological abnormalities. The 4 surviving fetuses without ventricular lesions remained asymptomatic as infants for the first year of life (de Faria Couto and Leite, Reference de Faria Couto and Leite2004) indicating the prognostic value of fetal ultrasound examination. In another study, severe clinical toxoplasmosis with hydrocephalus was found in an infant born to 1 of 75 women who acquired toxoplasmosis during pregnancy (Higa et al. Reference Higa, Araújo, Tsuneto, Castilho-Pelloso, Garcia, Santana and Falavigna-Guilherme2010).

Varella et al. (Reference Varella, Canti, Santos, Coppini, Argondizzo, Tonin and Wagner2009) recorded acute toxoplasmosis in 41 per 10 000 pregnancies among 44 112 pregnant women submitted to prenatal screening for toxoplasmosis in Porto Alegre, RS. Acute toxoplasmosis was identified by the criteria recommended by the European Research Network on Congenital Toxoplasmosis (Lebech et al. Reference Lebech, Joynson, Seitz, Thulliez, Gilbert, Dutton, Ovlisen and Petersen1996) plus IgG avidity test and PCR testing in amniotic fluid. The rates of acute toxoplasmosis decreased from 66 per 10 000 pregnancies in 2001 to 21 per 10 000 pregnancies in 2005. Twenty-five cases of congenital toxoplasmosis were diagnosed at birth, and 12 additional cases were diagnosed at follow-up during the first year of life, resulting in a prevalence of congenital toxoplasmosis of 9 per 10 000 live births (Varella et al. Reference Varella, Canti, Santos, Coppini, Argondizzo, Tonin and Wagner2009).

Congenital toxoplasmosis detected by post-natal filter paper screening

Table 5 summarizes congenital toxoplasmosis identified through screening of children at birth or their mothers. Most of these reports were based on determination of IgM antibodies on blood collected on filter papers. Based on data in Table 5 the prevalence of congenital toxoplasmosis was 5–23 cases per 10 000 live births. In the largest sampling involving 800 164 infants from 27 states in Brazil (Neto et al. Reference Neto, Amorim and Lago2010), 496 infected (average 1 per 1613, range 0–20 per 10 000 infants) were identified. The variation in rate of congenital toxoplasmosis in various samples maybe partly related to the seroprevalence of T. gondii in pregnant women; in some regions >90% of women of child-bearing age are seropositive before pregnancy and thus not likely to deliver a T. gondii-infected baby. However, in most regions of Brazil the seroprevalence of T. gondii in pregnant women is between 50 and 80% and, although the proportion of susceptible pregnant women is still small, these women are a high risk for infection because they live in a highly contaminated environment.

Table 5. Prevalence of congenital toxoplasmosis in Brazil

a Filter paper, universal neonatal screening.

b Venous blood, screening survey of mothers in antenatal clinics.

c Cord blood, screening survey in a delivery room.

d Optical densities ⩾80% of the control cut-off.

Human immunodeficiency virus (HIV) infection and congenital toxoplasmosis

Concurrent HIV infection of the mother may alter the course of toxoplasmosis during pregnancy. De Azevedo et al. (Reference de Azevedo, Setúbal, Lopes, Camacho and de Oliveira2010a) and Fernandes et al. (Reference Fernandes, Vasconcellos, de Araújo and Medina-Acosta2009) reported congenital transmission in 4 infants born to HIV- infected women in Brazil but indicated that this event is rare. Seroprevalences in women with or without HIV are generally similar (Neto and Meira, Reference Neto and Meira2004). Seroprevalence of T. gondii in HIV-positive women (72% of 168) was only slightly higher than in women without HIV (67% of 1624) and no previously T. gondii-infected HIV-positive women delivered a T. gondii-infected child as documented by Lago et al. (Reference Lago, Conrado, Piccoli, Carvalho and Bender2009a). However, T. gondii has been transmitted from HIV-infected women with chronic T. gondii infection to their children (de Azevedo et al. Reference de Azevedo, Setúbal, Lopes, Camacho and de Oliveira2010a). Recently, Delicio et al. (Reference Delicio, Milanez, Amaral, Morais, Lajos, Pinto e Silva and Cecatti2011) reported congenital transmission of HIV and other concurrent infections in 15 (13 women were not on highly active antiretroviral therapy [HAART]) of 452 HIV-infected women; T. gondii infection was found in 6 children. On the face of it this appears to be a high rate of transmission of T. gondii, but methods used for diagnosis were not stated.

Congenital toxoplasmosis from chronically infected women

In immunocompetent women transmission of T. gondii usually occurs when the mother acquires infection during pregnancy. Rarely, congenital transmission has been documented from mothers infected in the months before the pregnancy. Silveira et al. (Reference Silveira, Ferreira, Muccioli, Nussenblatt and Belfort2003) reported congenital toxoplasmosis in a baby whose mother had evidence of past infection before the current pregnancy; she had been diagnosed serologically with ocular toxoplasmosis 20 years previously. She had no known immunocompromise but details of methods used to evaluate immunosuppression were not provided (Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). Elbez-Rubinstein et al. (Reference Elbez-Rubinstein, Ajzenberg, Dardé, Cohen, Dumètre, Yera, Gondon, Janaud and Thulliez2009) reported a case of severe toxoplasmosis as a result of re-infection during pregnancy, and reviewed 5 previous cases of congenital transmission from chronically infected women. One of the hypotheses for this rare event is re-infection with a highly virulent parasite with atypical T. gondii genotype (Lindsay and Dubey, Reference Lindsay and Dubey2011). In this respect travel to Brazil is a focus of attention (Kodjikian et al. Reference Kodjikian, Hoigne, Adam, Jacquier, Aebi-Ochsner, Aebi and Garweg2004; Anand et al. Reference Anand, Jones, Ricks, Sofarelli and Hale2012) because Brazilian strains of T. gondii are genetically different from those prevalent in Europe and North America (Lehmann et al. Reference Lehmann, Marcet, Graham, Dahl and Dubey2006). In the case described by Kodjikian et al. (Reference Kodjikian, Hoigne, Adam, Jacquier, Aebi-Ochsner, Aebi and Garweg2004) the mother was a resident of Switzerland for 6 years but born in Brazil and had travelled to Brazil during the fifth month of gestation. Recently, Andrade et al. (Reference Andrade, Vasconcelos-Santos, Carellos, Romanelli, Vitor, Carneiro and Januario2010) described a most unusual ocular toxoplasmosis in a mother and her baby. The baby was born asymptomatic but was found to have bilateral retinochoroiditis and had IgM and IgG antibodies to T. gondii. The mother had clinical retinochorioditis and T. gondii antibodies 10 years before the current pregnancy giving birth to the infected child. During the current pregnancy the mother had clinical retinochorioditis, stable IgG antibodies and no IgM antibodies to T. gondii.

Clinical toxoplasmosis in congenitally infected children

Most congenitally infected children are asymptomatic at birth and some do not manifest symptoms until later in childhood, or even in adult life (McLeod et al. Reference McLeod, Kieffer, Sautter, Hosten and Pelloux2009; Delair et al. Reference Delair, Latkany, Noble, Rabiah, McLeod and Brézin2011; Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). The most common manifestation of congenital toxoplasmosis is ocular disease, sometimes presenting as retinochoroiditis, cataracts, strabismus or nystagmus, and total blindness. This pattern was observed in studies in Brazil, although most children were not followed past 12 months of age. Depending on how the sample was obtained, some studies are more useful for demonstrating the prevalence of congenital toxoplasmosis. Other studies are case series reported by symptoms, which although not able to determine prevalence, demonstrate the wide range and the possible severity of clinical manifestations (Table 6). The most accurate information with respect to clinical disease during the neonatal period was provided by studies by Vasconcelos-Santos et al. (Reference Vasconcelos-Santos, Azevedo, Campos, Oréfice, Queiroz-Andrade, Carellos, Romanelli, Januário, Resende, Martins, Carneiro, Vitor and Caiaffa2009). Unlike other studies in Brazil, 178 (93·7%) of 190 children were examined ophthalmologically at a median of 56 days of age and all children were born in the state of Minas Gerais. Most (142, 79·8% of 178) infants had some evidence of ocular disease (Table 6). The authors state that some peripheral ocular lesions might have been missed because the children were not sedated during eye examinations. Viable T. gondii was isolated from blood of 27 children and the scientific community is waiting for results of genotyping of these isolates. Hearing was evaluated in 106 of these children (de Resende et al. Reference de Resende, de Andrade, de Azevedo, Perissinoto and Vieira2010). Forty-six children had hearing dysfunction; 13 had conductive hearing loss, 4 had sensorineural hearing loss, and 29 had central hearing dysfunction. Additionally, there was an association between hearing problems and language deficits. The percentage of children with hearing loss in this study is much higher than reported for treated or untreated congenitally infected children in North America or Europe (Olariu et al. Reference Olariu, Remington, McLeod, Alam and Montoya2011; Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011).

Table 6. Clinical toxoplasmosis in congenitally-infected children in Brazil

CT, congenital toxoplasmosis; ICC, intracranial calcification; RC, retinochoroiditis; RS, retinal scar; HS, hepato-splenomegaly; LAD, lymphadenopathy; CSF, cerebrospinal fluid; ALT, alanine aminotransferase ; AST, aspartate aminotransferase.

* 7 eyes presented medial opacities, which prevented fundus examination.

Melamed et al. (Reference Melamed, Dornelles and Eckert2001, Reference Melamed, Eckert, Spadoni, Lago and Uberti2009) examined under sedation the eyes of 44 <1 year-old congenitally infected children. Thirty-one of 44 (70·4%) children had ocular disease and retinochoroiditis was the most common (65·9%) lesion. The retinochoroiditis was bilateral in 22 cases, lesions were active in 8 eyes and had healed in 43 children. This study indicated that, like the study from Minas Gerais, a high proportion of children with ocular disease were observed earlier than studies from other countries (McLeod et al. Reference McLeod, Kieffer, Sautter, Hosten and Pelloux2009; Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). These findings are contrary to what has been seen in treated children in Europe and North America and might be related to treatment (McLeod et al. Reference McLeod, Boyer, Karrison, Kasza, Swisher, Roizen, Jalbrzikowski, Remington, Heydemann, Noble, Mets, Holfels, Withers, Latkany and Meier2006, Reference McLeod, Kieffer, Sautter, Hosten and Pelloux2009).

Nationwide estimates of congenital toxoplasmosis in Brazil

Data summarized in Table 5 indicate a wide range of 5–23 congenital infections per 10 000 births. Most of the studies were based on selected sampling because there is no national screening of women or children for toxoplasmosis in Brazil. Often the sampling was based on who could afford the testing and under these circumstances there will be under representation of samples from low economic groups. Based on observations in Europe and USA, there is also the possibility of false negativity because many infants with congenital toxoplasmosis are negative for IgM antibodies at birth (Guerina et al. Reference Guerina, Hsu, Meissner, Maguire, Lynfield, Stechenberg, Abroms, Pasternack, Hoff, Eaton, Grady, Cheeseman, McIntosh, Medearis, Robb and Weiblen1994; Lebech et al. Reference Lebech, Andersen, Christensen, Hertel, Nielsen, Peitersen, Rechnitzer, Larsen, Norgaard-Pedersen and Petersen1999; Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). It is also important to note the issue of false positivity if the newborn IgM tests are not confirmed with follow-up confirmatory tests in the mother and infant. The specificity of various IgM tests used is also of concern (Remington et al. Reference Remington, McLeod, Wilson, Desmonts, Remington, Klein, Wilson, Nizet and Maldonado2011). As stated earlier, there is no national laboratory for confirmation of T. gondii serological testing in Brazil.

The most accurate figures on congenital toxoplasmosis prevalence are provided by the study by Vasconcelos-Santos et al. (Reference Vasconcelos-Santos, Azevedo, Campos, Oréfice, Queiroz-Andrade, Carellos, Romanelli, Januário, Resende, Martins, Carneiro, Vitor and Caiaffa2009). In this study, blood samples were collected from 146 307 newborns at 1560 public health care centres in 853 cities in the state of Minas Gerais. All serological testing was performed in one laboratory initially using an IgM-ELISA capture test kit (Toxo IgMQ-Preven, Symbiosis, Leme, Brazil) and results were confirmed on further testing for IgA antibodies (enzyme-linked immunosorbent assay) and IgG and IgM anti-T. gondii (enzyme-linked fluorometric assay, VIDAS, BioMérrieux SA, Lyon, France), using blood samples from infants and their mothers. Additionally, infected children were followed clinically months after delivery (Vasconcelos-Santos et al. Reference Vasconcelos-Santos, Azevedo, Campos, Oréfice, Queiroz-Andrade, Carellos, Romanelli, Januário, Resende, Martins, Carneiro, Vitor and Caiaffa2009; de Resende et al. Reference de Resende, de Andrade, de Azevedo, Perissinoto and Vieira2010). Congenital toxoplasmosis was suspected in 235 infants (1 in 622), and confirmed in 190 children (1 in 770 live births). This figure of 1 per 770 live births does not include in-utero mortality due to toxoplasmosis nor infants negative for IgM antibodies at birth.

According to the Brazilian Institute for Geography and Statistics (IBGE) (http://www.ibge.gov.br/home/estatistica/populacao/projecao_da_populacao/2008/projecao.pdf) 2, 649 396 live births are projected in Brazil in 2015. If one assumes a rate of 1 infected child per 1000 births, 2649 children infected with congenital toxoplasmosis are likely to be born yearly in Brazil. Most of these infected children are likely to develop some symptoms or signs of clinical toxoplasmosis (Table 6).

Currently, there are no estimates of cost of caring for these infected children in Brazil, but financial burden on families and the government will be high. Based on the 1992 cost of living, the human illness losses due to congenital toxoplasmosis were estimated to be up to 8·8 billion dollars in the USA based on 1 infected child per 1000 live births (Roberts et al. Reference Roberts, Murrell and Marks1994). During the past 2 decades medical costs have sky rocketed (Stillwaggon et al. Reference Stillwaggon, Carrier, Sautter and McLeod2011). As stated earlier the morbidity due to congenital toxoplasmosis in Brazil is much higher than in the other parts of the world (Gilbert et al. Reference Gilbert, Freeman, Lago, Bahia-Oliveira, Tan, Wallon, Buffolano, Stanford and Petersen2008; Melamed et al. Reference Melamed2009). Clinical data on congenitally infected children in Brazil in the last 2 decades are summarized in Table 6. Based on those studies whose methodology allows us to estimate morbidity rates, approximately 35% of children had neurological disease including hydrocephalus, microcephaly and mental retardation, approximately 80% had ocular lesions, and in one report 40% of children had hearing loss. Several deaths occurring soon after birth, as a result of congenital toxoplasmosis, have been described. It is remarkable that in 2 studies from Minas Gerais, 2 decades apart, the percentages of children with retinal disease are similar (77% of 74, Bahia et al. Reference Bahia, Oréfice and de Andrade1992, and 80% of 178 Vasconcelos-Santos et al. Reference Vasconcelos-Santos, Azevedo, Campos, Oréfice, Queiroz-Andrade, Carellos, Romanelli, Januário, Resende, Martins, Carneiro, Vitor and Caiaffa2009).

As stated earlier, currently, there are no economic estimates with respect to impact of clinical toxoplasmosis in Brazil. Recently, Stillwaggon et al. (Reference Stillwaggon, Carrier, Sautter and McLeod2011) provided an extensive guideline for estimating costs of preventive maternal screening for and the social costs resulting from toxoplasmosis based on studies in Europe and the USA. While estimating these costs, the value of all resources used or lost should be considered, including the cost of medical and non-medical services, wages lost, cost of in-home care, indirect costs of psychological impacts borne by the family for life-time care of a substantially cognitively impaired child; cost of fetal death was estimated to be $5 million dollars (Stillwaggon et al. Reference Stillwaggon, Carrier, Sautter and McLeod2011).

Although it is unethical to value human life in terms of dollars, each nation has to balance public funding for all the needs of its people, including prevention of crippling ailments. Brazil has one of highest rates of T. gondii infection (50–80%) in women before their first pregnancy. Therefore, these seropositive women are considered immune, and can be excluded from future screening for toxoplasmosis if the infection in Brazil is the same as documented so carefully in France by Desmonts and Couvreur (Reference Desmonts and Couvreur1974) in earlier decades. At issue are pregnant women who are seronegative; their chances of acquiring T. gondii infection during pregnancy are high because the environment is highly contaminated with oocysts. Preventive measures (hygiene education, possible immunization if a vaccine for toxoplasmosis becomes available) should start in elementary schools since as many as 50% of 10-year-old children in many localities in Brazil had been exposed to T. gondii (Table 3).

Post-natal toxoplasmosis

Pregnant women

It has been suggested by Avelino et al. (Reference Avelino, Campos, de Parada and de Castro2003) that women in Brazil are more susceptible to T. gondii infection during pregnancy but there is no definitive evidence for this assumption. However, it is a fact that pregnancy induces immunosuppression and thus toxoplasmosis maybe more severe clinically in pregnant than in non-pregnant women. Judging from the published information it seems that only a small proportion of women who become infected in pregnancy have recognized symptomatic clinical toxoplasmosis. In Lyon, France, where all pregnant women are tested for T. gondii infection, only 36 (5% of 603) recalled any clinical symptoms simulating toxoplasmosis (Dunn et al. Reference Dunn, Wallon, Peyron, Petersen, Peckham and Gilbert1999). In Europe, the severity of toxoplasmosis in the fetus or the infant is not related to the degree of symptoms of T. gondii infection in the mother (Dunn et al. Reference Dunn, Wallon, Peyron, Petersen, Peckham and Gilbert1999; Gilbert et al. Reference Gilbert, Dunn, Wallon, Hayde, Prusa, Lebech, Kortbeek, Peyron, Pollak and Petersen2001), but such data are not available for Brazil. Limited information suggests that clinical toxoplasmosis in the pregnant woman may be more severe in Brazil than in Europe. In a prenatal follow up of 204 women who became infected with T. gondii during pregnancy, 58 (28·4%) were symptomatic (Castilho-Pelloso et al. Reference Castilho-Pelloso, Falavigna and Falavigna-Guilherme2007). These symptoms included headaches in 58 (100%), concomitant symptoms in 45 (77·5%) with visual disturbances, myalgia in 35 (58%), and lymphadenopathy with fever in 24 (41·3%).

Immunocompetent persons

Clinical toxoplasmosis is rarely recognized in immunocompetent adults in Brazil, except in special circumstances. Silva et al. (Reference Silva, de Souza Neves, Benchimol and de Moraes2008) reported acute toxoplasmosis in a group of 313 patients who were seen because of toxoplasmosis like symptoms at a specialized hospital in the city of Rio de Janeiro from 1992 to 2004. Records of these patients were studied retrospectively, and the inclusion criteria were serology for acute infection including IgM and IgA testing, and symptoms. Most of these (65·5%) were child-bearing age women (27·2% pregnant). Clinical signs or symptoms were noted in 261; lymphadenopathy in 59·8%, fever in 27·2%, headache in 10·7%, weakness in 10·0%, weight loss in 8·4%, myalgia in 8%, and hepatosplenomegaly in 1·5%. Nine patients developed retinochoroiditis, 7 had ocular lesions at the time of admission and 2 developed lesions 2 years after initial visit. Of particular interest is that 26 symptomatic patients were children 10 years or younger; to our knowledge this is one of the first reports of clinically acquired toxoplasmosis in children in Brazil. Similar clinical signs were documented by Neves et al. (Reference Neves, Bicudo, Carregal, Bueno, Ferreira, Amendoeira, Benchimol and Fernandes2009) who enrolled 37 symptomatic patients (22 males, 15 females) in a 30-month prospective study. To be included in the sampling, patients had to present with at least 1 of the following signs or symptoms of acquired toxoplasmosis: fever, lymph node enlargement, weight loss or retinochoroiditis. These patients in 2006–2008 attended a clinic in Rio de Janeiro and had ascending IgM and IgG antibody titres to T. gondii. Frequency (%) of symptoms and laboratory findings in these 37 patients were: lymph node enlargement 94·6, asthenia 86·5, headache 70·3, fever 67·6, weight loss 67·2, and retinochoroiditis 10·8.

Unusually severe acute toxoplasmosis was noted in two 41-year-old men who had fever, myalgia, nausea, and severe headache; these were unrelated reports (Leal et al. Reference Leal, Cavazzana, de Andrade, Galisteo, de Mendonça and Kallas2007; de Souza Neves et al. Reference de Souza Neves, Kropf, Bueno, Bonna, Curi, Amendoeira and Fernandes Filho2011). The first patient from São Paulo was admitted to a hospital with an 8-day history of fever, myalgia, and headache followed by 4 days of nausea and vomiting (Leal et al. Reference Leal, Cavazzana, de Andrade, Galisteo, de Mendonça and Kallas2007). On the second day of hospitalization he developed pulmonary insufficiency with bilateral pneumonitis. He was successfully treated with sulfadiazine, pyrimethamine, corticosteroids and folinic acid. The diagnosis was supported by positive findings of IgM and IgG antibodies to T. gondii.

The other patient was admitted to an emergency unit of a hospital in Rio de Janeiro also with a history of fever, myalgia, nausea, and severe headache (de Souza Neves et al. Reference de Souza Neves, Kropf, Bueno, Bonna, Curi, Amendoeira and Fernandes Filho2011). He later developed meningeal signs, pneumonia, and cervical lymphadenopathy. Diagnosis was supported by increasing levels of IgG and IgM antibodies. The patient was treated successfully with anti-T. gondii therapy comprised of intravenous clindamycin and oral pyrimethamine.

Acute toxoplasmosis outbreaks

An epidemic of febrile adenopathy simulating toxoplasmosis was observed in 1966 in a University in São José dos Campos, 100 km from São Paulo city (Magaldi et al. Reference Magaldi, Elkis, Pattoli, de Queiróz, Coscina and Ferreira1967, Reference Magaldi, Elkis, Pattoli and Coscina1969). Between March and May 1966, 99 out of 500 students became ill. Symptoms reported were: fever in 79, lymph node enlargement in 61, asthenia in 52, headache in 32, sore throat in 17, and myalgia in 10. High titred T. gondii antibodies were found in most patients, and titres were still rising 6 months later. Another group of 22 people (not students) also had a similar syndrome. No risk assessment was performed because the life cycle of T. gondii was unknown at that time.

An outbreak of toxoplasmosis was reported in people from a farm in rural Além Paraíba, Minas Gerais (Coutinho et al. Reference Coutinho, Morgado, Wagner, Lobo and Sutmoller1982b). Nine of 36 persons living on a dairy farm developed illness characterized by fever, headache, and lymphadenopathy; all of them had serological evidence of acute toxoplasmosis. The illness was noted in May 1976, one month after the farmer had a party and served barbecued pork from a pig killed on the farm. The source of T. gondii infection was not determined. Viable T. gondii was isolated from soil samples collected from the farm but the year of soil sampling was not stated (Coutinho et al. Reference Coutinho, Lobo and Dutra1982a). Two outbreaks were circumstantially linked to eating mutton (Bonametti et al. Reference Bonametti, Passos, da Silva and Macedo1997b) or pork (de Almeida et al. Reference de Almeida, de Alencar, do Carmo, de Araújo, Garcia, Reis, Figueiredo, Sperb, Branco, Franco and Hatch2006), and in both of these instances a child developed acute toxoplasmosis after drinking mother's milk. Sixteen of 17 people who feasted on raw mutton while attending a party in Paraná, Brazil in September, 1993 became ill, all 16 developed fever, headaches, myalgia, arthralgia, and cervical lymphadenopathy, and 1 also had retinochoroiditis (Bonametti et al. Reference Bonametti, Passos, da Silva and Bortoliero1997a, Reference Bonametti, Passos, da Silva and Macedob). Among these patients was a mother with a nursing child. The child developed fever, malaise, and irritability, and had both IgG and IgM antibodies; and the child was fed exclusively on mother's milk. The mother's illness began 3 weeks before the child became ill.

The second case of acquired toxoplasmosis was in a 2-month-old baby diagnosed by one of the authors (Eleonor Lago). The infant was fed exclusively on mother´s milk. The mother had symptoms of acute toxoplasmosis beginning 1 month after delivery, including fever. Ten members of the same family (including this mother and her baby), and another 1-year-old child from a different mother had acute acquired toxoplasmosis. Eight of 10 were symptomatic, with cervical lymphadenopathy and myalgia in 8, fever and night sweats in 7, and headache in 6 patients. Another adult woman had acute active toxoplasmic retinochoroiditis. The family had consumed raw pork sausage at a party in Santa Vitória do Palmar, RS (de Almeida et al. Reference de Almeida, de Alencar, do Carmo, de Araújo, Garcia, Reis, Figueiredo, Sperb, Branco, Franco and Hatch2006).

In May 1999, 113 people at a university campus had evidence of lymphoglandular toxoplasmosis, thought to be associated with contamination of food and water with T. gondii oocysts at the university cafeteria (Gattás et al. Reference Gattás, Nunes, Soares, Pires, Pinto and de Andrade2000-published only as an abstract of a meeting). There were more than 200 cats on the campus. No new cases were observed when filtered (2 μm filter to remove larger particles including T. gondii oocysts) water was served, and efforts were made to control the cat population.

One of the largest outbreaks of clinical toxoplasmosis occurred in Santa Isabel do Ivaí Paraná (Daufenbach et al. Reference Daufenbach, Alves, Carmo, Wanderley, de Azevedo, Elisbão, Santos, Vasconcelos, da Silva, da Silva, Arduino and Hatch2002; de Moura et al. Reference de Moura, Bahia-Oliveira, Wada, Jones, Tuboi, Carmo, Ramalho, Camargo, Trevisan, Graça, da Silva, Moura, Dubey and Garrett2006). The outbreak peaked between November 2001 and January 2002. A total of 426 persons had IgM and IgG antibodies to T. gondii out of 2884 serologically tested (area population 6771). Of these 156 persons participated in the clinical study. The main symptoms were headache (87%), fever (82%), myalgia (80%), lymphadenopathy (75%), anorexia (69%), arthralgia (61%), night sweats (53%), vomiting (38%), and rash (7%) (de Moura et al. 2006). Subsequently, 408 patients from this outbreak were examined for ocular lesions and IgG and IgM T. gondii antibodies; 18 had typical lesions of retinochoroiditis (15 unilateral, 3 bilateral), 24 had atypical superficial retinal lesions. Ten women seroconverted during pregnancy, 6 babies were born with congenital toxoplasmosis, 4 with ocular lesions, and 1 with neurological signs. One woman had lesions in both of her eyes and both eyes of her infant also were affected (Silveira, Reference Silveira2002; Dubey, Reference Dubey2010a). This outbreak was epidemiologically linked to a cistern that supplied municipal water. Viable T. gondii was isolated from water tanks on roof tops that temporarily stored water (de Moura et al. Reference de Moura, Bahia-Oliveira, Wada, Jones, Tuboi, Carmo, Ramalho, Camargo, Trevisan, Graça, da Silva, Moura, Dubey and Garrett2006). Viable T. gondii isolates were also obtained from a cat that was associated with a water cistern, domestic cats from homes in the city (Dubey et al. Reference Dubey, Navarro, Sreekumar, Dahl, Freire, Kawabata, Vianna, Kwok, Shen, Thulliez and Lehmann2004) and feral chickens from the city centre and adjoining area in Santa Isabel do Ivaí (Dubey et al. 2003). Although no attempts were made to isolate T. gondii from sick people a seroepidemiological study based on peptide typing of sera from patients from the outbreak linked the infection to the isolate from the water tank (Vaudaux et al. Reference Vaudaux, Muccioli, James, Silveira, Magargal, Jung, Dubey, Jones, Doymaz, Bruckner, Belfort, Holland and Grigg2010).

Ocular toxoplasmosis

Ocular disease is probably the most common potentially severe symptomatic manifestation in acute, post-natally acquired toxoplasmosis (Holland, Reference Holland2009). Until the 1980s, most of T. gondii retinochoroiditis was thought to be congenital (Holland, Reference Holland2003). Ophthalmologists from Brazil first reported retinochoroiditis in multiple siblings, and in patients who acquired infection later in life (Silveira et al. Reference Silveira, Belfort, Burnier and Nussenblatt1988, Reference Silveira, Belfort, Muccioli, Abreu, Martins, Victora, Nussenblatt and Holland2001). These findings have now been amply confirmed in many countries. Currently, most of the eye disease is thought to be post-natally acquired because <1% of the population becomes infected congenitally (Glasner et al. Reference Glasner, Silveira, Camargo, Kim, Nussenblatt, Belfort and Kaslow1992a, Reference Glasner, Silveira, Kruszon-Moran, Martins, Burnier, Silveira, Camargo, Nussenblatt, Kaslow and Belfortb). The prevalence of ocular toxoplasmosis in Brazil is considered to be high (Table S3, online version only). Glasner et al. (Reference Glasner, Silveira, Kruszon-Moran, Martins, Burnier, Silveira, Camargo, Nussenblatt, Kaslow and Belfort1992b) reported 17·7% prevalence of ocular toxoplasmosis in patients examined at Clínica Silveira in Erechim, southern Brazil. Erechim is mainly rural with a temperate climate and predominantly Italian, German, and Polish immigrant population. A door-to-door survey identified 1042 subjects (63% of the population) who participated in the study; all were examined for ocular lesions and had blood drawn for T. gondii serology. Prevalence increased with age; 4·3% of those 9–12 years old, 14·3% of those 13–16 years old and 24·6% of those 17–20 years old had ocular lesions. All but 1 patient (183 of 184) had antibodies to T. gondii and the prevalence was similar in males and females. This prevalence of ocular toxoplasmosis in Erechim is more than 10-fold higher than the prevalence in the USA (Jones and Holland, Reference Jones and Holland2010).

A follow-up study performed a decade later evaluated risk factors associated with ocular toxoplasmosis in the same locality (Jones et al. Reference Jones, Muccioli, Belfort, Holland, Roberts and Silveira2006). For this study, 131 infected and 110 uninfected controls were selected from the patients with eye disease who were evaluated at the Clínica Silveira for 12 months starting June 2003. All infected patients had IgG and IgM antibodies to T. gondii, indicating recently acquired infection. The controls were patients without T. gondii antibodies and seen at the same time as infected patients. Age, gender, race and ethinicity data were recorded, and all participitants completed a detailed questionnaire. Salient risk factors associated with toxoplasmosis were: eating rare meat, eating home-made cured, dried or smoked meat, having a garden, having soil-related activity, being male, and past and present pregnancy (Jones et al. Reference Jones, Muccioli, Belfort, Holland, Roberts and Silveira2006). The association of pregnancy and the number of children as a risk factor for toxoplasmosis is intriguing and has been observed previously in Brazil (Avelino et al. Reference Avelino, Campos, de Parada and de Castro2003).

Another impressive population-based study on ocular toxoplasmosis prevalence was reported by Portela et al. (Reference Portela, Bethony, Costa, Gazzinelli, Vitor, Hermeto, Correa-Oliveira and Gazzinelli2004). A door-to-door survey was conducted in rural Melquíades, northeast Governador Valadares, MG within a 100 km area of a village. A total of 414 persons were enrolled in the study. Half (49%) of them had T. gondii antibodies with a very high (47% of 49) seroprevalence in children less than 9 years old. A total of 29 of 414 (7%) persons had ocular lesions; 28 of these were seropositive, and 1 was seronegative. Overall, 28 (12·9%) of 216 seropositives had ocular lesions, and only 1 (0·5%) of 198 seronegatives had ocular lesions suggestive of toxoplasmosis. None of the 49 children had ocular toxoplasmosis, although 47% were seropositive. These data affirm that most ocular toxoplasmosis is post-natally acquired. A retinal scar was the most common lesion and predominated in persons older than 50 years. Shared residence was a risk factor for ocular toxoplasmosis, suggesting a common source of seropositivity among household members. It will be seen from data summarized in Table S3 that the prevalence of ocular toxoplasmosis differs with respect to region and the age groups studied. Using similar methods prevalence was 10-fold higher in Erechim (25·5% in patients up to 21 year olds, Glasner et al. Reference Glasner, Silveira, Kruszon-Moran, Martins, Burnier, Silveira, Camargo, Nussenblatt, Kaslow and Belfort1992b) than in Natal (1·15% in 5–21 year- olds, de Amorim Garcia et al. Reference de Amorim Garcia, Oréfice, de Oliveira Lyra, Bezerra Gomes, França and de Amorim Garcia Filho2004). Ocular lesions were found in 11 of 959, 5 to 21-year-old students attending public schools in Natal; lesions were bilateral in 1 student but with 20/20 vision (de Amorim Garcia et al. Reference de Amorim Garcia, Oréfice, de Oliveira Lyra, Bezerra Gomes, França and de Amorim Garcia Filho2004). Overall, lesions were less severe in these students than in patients in Erechim.

As stated earlier, although most reports of ocular toxoplasmosis were from the Clínica Silveira in Erechim, the disease is probably common in the rest of the Brazilian population, and toxoplasmosis has been recognized as an important cause of uveitis in Brazil since late 1970's (Belfort et al. Reference Belfort, Hirata and de Abreu1978; de Abreu et al. Reference de Abreu, Hirata, Belfort and Neto1980, Reference de Abreu, Belfort and Hirata1982; Petrilli et al. Reference Petrilli, Belfort, Moreira and Nishi1987; Silveira et al. Reference Silveira, Belfort and Burnier1987; Pinheiro et al. Reference Pinheiro, Oréfice, Andrade and Caiaffa1990; Glasner et al. Reference Glasner, Silveira, Kruszon-Moran, Martins, Burnier, Silveira, Camargo, Nussenblatt, Kaslow and Belfort1992b; Schellini et al. Reference Schellini, Zambrim, Amarante, Jorge and Silva1993; Reis et al. Reference Reis, Soares, Watanabe, Colombini and Leite1998a, Reference Reis, Campos and Fernandesb; Sebben et al. Reference Sebben, Melamed, Silveira, Locatelli, Fridman and Ferretti1995; Abreu et al. 1998; de Carvalho et al. Reference de Carvalho, Minguini, Moreira and Kara-José1998; Jorge et al. Reference Jorge, de Moraes Silva, Nakamoto and Jorge2003; Gouveia et al. Reference Gouveia, Yamamoto, Abdalla, Hirata, Kubo and Olivalves2004; Oliveira and Reis, Reference Oliveira and Reis2004; do Carmo et al. Reference do Carmo, Bichara and Póva2005; Alvarenga et al. Reference Alvarenga, Couto and Pessoa2007; Haddad et al. Reference Haddad, Sei, Sampaio and Kara-José2007; Nóbrega and Rosa, Reference Nóbrega and Rosa2007; Lynch et al. Reference Lynch, de Moraes, Malagueño, Ferreira, Cordeiro and Oréfice2008; Aleixo et al. Reference Aleixo, Benchimol, Neves, Silva, Coura and Amendoeira2009; de Souza and Casella, Reference de Souza and Casella2009; Lynch et al. Reference Lynch, Malagueño, Lynch, Ferreira, Stheling and Oréfice2009; Melamed, Reference Melamed2009; Diniz et al. Reference Diniz, Regatieri, Andrade and Maia2011; Mattos et al. Reference Mattos, Meira, Ferreira, Frederico, Hiramoto, Almeida, Mattos and Pereira-Chioccola2011). Even though toxoplasmosis can affect any part of the eye, retinochoroiditis is its hallmark (Silveira et al. Reference Silveira, Belfort, Nussenblatt, Farah, Takahashi, Imamura and Burnier1989; Hayashi et al. Reference Hayashi, Kim and Belfort1997; Holland et al. Reference Holland, Muccioli, Silveira, Weisz, Belfort and O'Connor1999; Silveira et al. Reference Silveira, Belfort, Muccioli, Abreu, Martins, Victora, Nussenblatt and Holland2001; Silveira, Reference Silveira2002; Yamamoto et al. Reference Yamamoto, Boletti, Nakashima, Hirata and Olivalves2003; Eckert et al. Reference Eckert, Melamed and Menegaz2007; Oréfice et al. Reference Oréfice, Costa, Oréfice, Campos, da Costa-Lima and Scott2007; Lynch et al. Reference Lynch, de Moraes, Malagueño, Ferreira, Cordeiro and Oréfice2008; Commodaro et al. Reference Commodaro, Belfort, Rizzo, Muccioli, Silveira, Burnier and Belfort2009; Melamed et al. Reference Melamed, Eckert, Spadoni, Lago and Uberti2009; Bottós et al. Reference Bottós, Miller, Belfort, Macedo, Belfort and Grigg2009; de Souza et al. Reference de Souza, DaMatta and Attias2009; Belfort et al. Reference Belfort, Rasmussen, Kherani, Lodha, Williams, Fernandes and Burnier2010; Arevalo et al. Reference Arevalo, Belfort, Muccioli and Espinoza2010; Delair et al. Reference Delair, Latkany, Noble, Rabiah, McLeod and Brézin2011). Ocular toxoplasmosis is the main cause of uveitis worldwide, and in Brazil it is responsible for 70% of the cases (de Amorim Garcia et al. Reference de Amorim Garcia, Oréfice, de Oliveira Lyra, Bezerra Gomes, França and de Amorim Garcia Filho2004). In retrospective studies conducted more than 20 years ago, bilateral toxoplasmic macular scars, optic atrophy, and congenital cataracts were the main cause of reduced vision in children in Brazil (Kara-José et al. Reference Kara José, de Carvalho, Pereira, Venturini, Gasparetto and Gushiken1988; Buchignani and Silva, Reference Buchignani and Silva1991; de Cavalho et al. Reference de Carvalho, Minguini, Moreira and Kara-José1998).

In human ocular toxoplasmosis, the parasite multiplies in the retina and inflammation occurs primarily in the choroid; the choroid alone is not affected. Early lesions of acquired toxoplasmosis are unknown because eyes are often not examined until the infection is symptomatic. Holland et al. (Reference Holland, Muccioli, Silveira, Weisz, Belfort and O'Connor1999) reported retinal vasculitis without necrosis in 10 Brazilian patients who had recently acquired toxoplasmosis. Eckert et al. (Reference Eckert, Melamed and Menegaz2007) reported optic nerve involvement in 5·3% of ocular toxoplasmosis in Brazil and in 23 of 51 eyes, optic nerve lesions preceded retinal lesions. Clinical diagnosis of ocular toxoplasmosis is difficult in the absence of retinal lesions, and it is often difficult to clinically distinguish congenital versus acquired toxoplasmosis, in both instances ocular lesions may develop several years after infection. However, in congenital infection ocular lesions are more often bilateral, serum IgG antibodies are often low in titre, and IgM is rarely detectable. Antibody levels in ocular patients may differ with respect to patients from different countries; levels of IgG were higher in Brazilian versus Swiss patients (Garweg et al. Reference Garweg, Ventura, Halberstadt, Silveira, Muccioli, Belfort and Jacquier2005). The severity of ocular toxoplasmosis may be influenced by the high virulence of the T. gondii genotype (Vallochi et al. Reference Vallochi, Muccioli, Martins, Silveira, Belfort and Rizzo2005; Bottós et al. Reference Bottós, Miller, Belfort, Macedo, Belfort and Grigg2009).

Definitive cure of ocular toxoplasmosis without recurrence is not possible because available anti-toxoplasmic medicines are not effective in killing tissue cysts present in the retina. Recurrences of retinochoroiditis in Brazilian patients are common in spite of treatment (Silveira et al. Reference Silveira, Belfort, Muccioli, Holland, Victora, Horta, Yu and Nussenblatt2002). A recent study showed that viable T. gondii can circulate in patients with eye disease in both acutely and chronically infected patients (Silveira et al. Reference Silveira, Vallochi, da Silva, Muccioli, Holland, Nussenblatt, Belfort and Rizzo2011).

Toxoplasmosis in HIV-infected patients

The HIV epidemic in the 1980s brought recognition of cerebral toxoplasmosis in adults, resulting from reactivation of latent infection. The percentage of T. gondii seropositive persons with AIDS that develop clinical toxoplasmosis varies. In the USA approximately 10% of seropositives developed clinical toxoplasmosis whereas this percentage was 25–30% of the seropositives in Europe; reasons for this variability are unknown (Luft and Remington, Reference Luft and Remington1992). Cerebral toxoplasmosis was definitively diagnosed in 8–34% of AIDS patients in Brazil who were examined at autopsy (Rosemberg et al. Reference Rosemberg, Lopes and Tsanaclis1986; Chimelli et al. Reference Chimelli, Rosemberg, Hahn, Lopes and Barretto Netto1992; Camara et al. Reference Camara, Tavares, Ribeiro and Dumas2003; Weinstein et al. Reference Wainstein, Ferreira, Wolfenbuttel, Golbspan, Sprinz, Kronfeld and Edelweiss1992; Cury et al. Reference Cury, Pulido, Furtado and da Palma2003; de Souza et al. Reference de Souza, Feitoza, de Araújo, de Andrade and Ferreira2008; Silva et al. Reference Silva, Rodrigues, Micheletti, Tostes, Meneses, Silva-Vergara and Adad2012; Table S4, online version only). However, T. gondii seroprevalence was not determined in these persons that were examined post-mortem. Passos et al. (Reference Passos, de Araújo Filho and de Andrade2000) retrospectively analysed records of 73 AIDS patients considered to have toxoplasmic encephalitis, 38 patients in 1988 (group A), and 33 patients in 1993 (group B) at the main hospital in São Paulo. Toxoplasma gondii antibodies were found in 81·2% (25 of 31) in group A and 61·5% (16 of 26) in group B patients; 21·1% (8 of 38) in group A and 30·3% (17 of 33) in group B died of toxoplasmosis. However, criteria for patient selection and diagnosis were ill defined. Neurological signs or symptoms, CT scan and anti-T. gondii therapy were considered in case selection; however, CT scan and T. gondii serological examination were not performed on all patients. It is worth noting that the definitive diagnosis of cerebral toxoplasmosis should not be made based solely on the CT scan because lymphomas and other conditions may be mistaken for toxoplasmosis (Mentzer et al. Reference Mentzer, Perry, Fitzgerald, Barrington, Siddiqui and Kulasegaram2012).

There are other reports of toxoplasmosis in AIDS patients from different regions of Brazil (Chahade et al. Reference Chahade, de Faria Soares, Guimarães, Berbert, Szwarc and Levi1994; Nascimento et al. Reference Nascimento, Stollar, Tavares, Cavasini, Maia, Cordeiro and Ferreira2001; Nobre et al. Reference Nobre, Braga, Rayes, Serufo, Godoy, Nunes, Antunes and Lambertucci2003; Alves et al. Reference Alves, Magalhães and Gomes de Matos2010a, Reference Alves, Magalhães and Gomes de Matosb; Correia et al. Reference Correia, Melo and Costa2010). The incidence of cerebral toxoplasmosis in AIDS patients is now drastically reduced after the institution of highly active antiviral therapy (HAART). In one report based on 1138 HIV-infected patients admitted to a hospital in São Paulo, 115 (10%) were diagnosed with neural toxoplasmosis (Vidal et al. Reference Vidal, Hernandez, de Oliveira, Dauar, Barbosa and Focaccia2005). In 35% of these patients, neural toxoplasmosis led to the diagnosis of HIV infection and in 75% cerebral toxoplasmosis was the AIDS-defining disease. Of these 115 patients, 55 were followed clinically, 40 had headache and hemiparesis, 28 had confusion, 25 had fever, 11 had alterations of cranial nerves, 8 had visual alterations and 5 were ataxic. Of these 55 patients, cerebral toxoplasmosis was diagnosed at autopsy in 2 patients who had died within 2 weeks of initiation of HAART and anti-T. gondii therapy. De Oliveira et al. (Reference de Oliveira, Greco, Oliveira, Christo, Guimarães and Corrêa-Oliveira2006) reported a high (42·3%) prevalence of neural toxoplasmosis among 417 HIV patients admitted to hospital in Belo Horizonte, MG.

In most AIDS patients, toxoplasmosis is due to reactivation of latent infection and lesions are restricted to the central nervous system (CNS). Of 92 AIDS patients from a reference hospital in Brazil, examined at post-mortem in 1993–2000, 8 were diagnosed with toxoplasmosis, all with CNS involvement (Cury et al. Reference Cury, Pulido, Furtado and da Palma2003). In the brain, the predominant lesion is necrosis, often resulting in multiple abscesses, some of which are as large as a tennis ball. These abscesses often blend with normal tissue in which numerous tachyzoites and tissue cysts are present. As many as 1 million tachyzoites per ml or gramme of affected tissue can be present (Dubey, Reference Dubey2010a). Tissue cysts are often seen at the periphery and often differ in size. Such lesions are now rarely seen in patients treated for toxoplasmosis and HIV. Although any part of the brain may be involved, lesions are more common in the basal ganglia and appear as ring-enhancing lesions (Cota et al. Reference Cota, Assad, Christo, Giannetti, dos Santos and Xavier2008).Vidal et al. (Reference Vidal, Hernandez, de Oliveira, Dauar, Barbosa and Focaccia2005) noted diffuse cerebral necrosis in 2 patients that were examined at autopsy. These atypical diffuse cerebral infections might be caused by atypical genotypes of T. gondii (Ferreira et al. Reference Ferreira, Vidal, de Mattos, de Mattos, Qu, Su and Pereira-Chioccola2011). According to Pereira-Chioccola et al. (Reference Pereira-Chioccola, Vidal and Su2009) 20% of AIDS patients in Brazil have these atypical cerebral lesions.

In a few AIDS patients toxoplasmosis is generalized, affecting many organs. Barbosa et al. (Reference Barbosa, Molina, de Souza, Silva, Micheletti, dos Reis, Teixeira and Silva-Vergara2007) reported disseminated toxoplasmosis in 2 AIDS patients confirmed at autopsy. Severe myocarditis was found in 1 patient (Nobre et al. Reference Nobre, Braga, Rayes, Serufo, Godoy, Nunes, Antunes and Lambertucci2003). Ocular toxoplasmosis has been reported in 4–8% of AIDS patients (Rehder et al. Reference Rehder, Burnier, Pavesio, Kim, Rigueiro, Petrilli and Belfort1988; Muccioli et al. Reference Muccioli, Belfort, Lottenberg, Lima, Santos, Kim, de Abbreu and Neves1994; Matos et al. Reference Matos, Santos and Muccioli1999; Arruda et al. Reference Arruda, Muccioli and Belfort2004; Zajdenweber et al. Reference Zajdenweber, Muccioli and Belfort2005; Alves et al. Reference Alves, Magalhães and Gomes de Matos2010a, b), including a 13-month-old child (Moraes, Reference Moraes1999).

In the early days of the AIDS epidemic, diagnosis of cerebral toxoplasmosis was confirmed at autopsy (Table S5, online version only) or by needle biopsy of lesions suspected by computer tomography (CT) scan. Currently, diagnosis is aided by attempts to demonstrate live T. gondii parasites, antibodies to T. gondii or T. gondii antigens or T. gondii DNA in blood or CSF or even in saliva (Borges and Figueiredo, Reference Borges and de Castro Figueiredo2004; Vidal et al. Reference Vidal, Colombo, de Oliveira, Focaccia and Pereira-Chioccola2004; Colombo et al. Reference Colombo, Vidal, Penalva de Oliveira, Hernandez, Bonasser-Filho, Nogueira, Focaccia and Pereira-Chioccola2005; Meira et al. Reference Meira, Costa-Silva, Vidal, Ferreira, Hiramoto and Pereira-Chioccola2008; Nogui et al. Reference Nogui, Mattas, Turcato and Lewi2009; Correia et al. Reference Correia, Melo and Costa2010; Mesquita et al. Reference Mesquita, Ziegler, Hiramoto, Vidal and Pereira-Chioccola2010a, Reference Mesquita, Vidal and Pereira-Chioccolab; Meira et al. Reference Meira, Vidal, Costa-Silva, Frazatti-Gallina and Pereira-Chioccola2011). Obviously, use of peripheral blood for diagnosis is less invasive and good results were obtained using quantitative serology and DNA detection in cerebral toxoplasmosis (Vidal et al. Reference Vidal, Diaz, de Oliveira, Dauar, Colombo and Pereira-Chioccola2011).

EPIDEMIOLOGY

The ingestion of oocysts from the environment and the consumption of meat infected with tissue cysts are the two most important modes of transmission of T. gondii. Determination of sources of infection is technically difficult because by the time T. gondii infection is diagnosed the original source of infection may not be demonstrable. Table S5 (online version only) summarizes some of the risk assessment studies for T. gondii infection in Brazil. Much of this epidemiological information was dependent on the type of questions asked and the answers obtained. The environment in many areas in Brazil is highly contaminated by oocysts, and thus it is difficult to pinpoint sources of infection. We will attempt to summarize available information regarding oocyst shedding and infection in meat animals. Among pregnant women, lower socio-economic level, lower level of education, higher age, soil handling, and contact with cats were considered the most important risk factors for T. gondii infection (Table S5, online version only).

Transmission by oocysts

Cats (both domestic and wild) are the only animals that can excrete T. gondii oocysts. A cat can excrete millions of oocysts, which can survive in the environment for months, depending on moisture and temperature (Dubey, Reference Dubey2010a). Free-roaming domestic cats are abundant in public places in Brazil. Relatively little is known of the prevalence of T. gondii in cats in Brazil, and 7 of 15 surveys were from the São Paulo State (Table 7). Seroprevalence was low in cats sampled in clinics, but these were probably pets and were most likely fed processed food (Table 7).

Table 7. Prevalence of Toxoplasma gondii antibodies in domestic cats in Brazil

a Veterinary clinic.

b Zoonosis Center.

Of these surveys, the most comprehensive study was that reported by Pena et al. (Reference Pena, Soares, Amaku, Dubey and Gennari2006). In that study an equal number of male and female (118 males, 119 females) stray cats were captured from 15 counties in São Paulo State in 2003. Antibodies to T. gondii were found in 84 (35·4%) of 237 cats. Tissues of 71 seropositive cats were bioassayed in mice and viable T. gondii was isolated from 66·2% (47 cats).

During the epidemiological study of a waterborne outbreak in Santa Isabel do Ivaí, Paraná, 58 adult cats were obtained from 51 houses around this town (Dubey et al. Reference Dubey, Navarro, Sreekumar, Dahl, Freire, Kawabata, Vianna, Kwok, Shen, Thulliez and Lehmann2004). All cats were serologically tested as well as by bioassay, irrespective of their antibody status. Antibodies to T. gondii were found in 49 (84·4%) of 58 cats, and viable T. gondii was isolated from 37 of 54 (68·5%) of these cats. This study indicated that more than 80% of homes in this area had a T. gondii-infected cat.

Cats start shedding T. gondii within 10 days of consuming infected tissues and they shed oocysts only for 1–2 weeks (Dubey and Frenkel, Reference Dubey and Frenkel1972). During the period of oocyst shedding cats are rarely ill and they do not have antibodies to T. gondii. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts. Therefore for epidemiological studies, seroprevalence data are more meaningful than determining the prevalence of oocysts in feces. Moreover, at any given time-period only 1% of cats are found shedding oocysts (Jones and Dubey, Reference Jones and Dubey2010). This low rate of fecal positivity of oocysts was also exemplified in the report by Pena et al. (Reference Pena, Soares, Amaku, Dubey and Gennari2006); T. gondii oocysts were found in only 3 of 237 (1·2%) cats. Early reports from Brazil also indicate a low prevalence of T. gondii-like oocysts in cat feces (Barbosa et al. Reference Barbosa, Fernandes, Pinheiro, Teixeìra and de Oliveira1973; Nery-Guimarães and Lage Reference Nery-Guimarães and Lage1973; do Amaral et al. Reference Amaral, Santos, Ribeiro and Rebouças1976b; Ogassawara et al. Reference Ogassawara, Benassi, Hagiwara and Larsson1980; Chaplin et al. Reference Chaplin, Silva and Araújo1991).

Based on 12 million cats, a seropositivity of 25–50%, and shedding of 1 million oocysts per cat there could be large numbers of oocysts in the environment in Brazil. In addition to domestic cats, wild felids can shed oocysts. Toxoplasma gondii oocysts have been demonstrated in feces of several species of naturally and experimentally infected wild felids (Jones and Dubey, Reference Jones and Dubey2010). Brazil is home to several species of wild Felidae, especially in zoos (Table S6, online version only).

Epidemiological surveys, especially in pre-teen children (Table 3) imply that the environment is highly contaminated with oocysts, especially in lower socio-economical communities. Dos Santos et al. (Reference dos Santos, Nunes, Luvizotto, de Moura, Lopes, da Costa and Bresciani2010) found T. gondii oocysts in 7 of 31 soil samples from 31 elementary public-school playgrounds in the northwest area of São Paulo State. This is an alarming rate of soil contamination due to T. gondii oocysts. Coutinho et al. (Reference Coutinho, Lobo and Dutra1982a) also found T. gondii in soil samples from a farm where an outbreak of T. gondii had occurred. In earlier studies in Porto Alegre, RS, Chaplin et al. (Reference Chaplin, Silva and Araújo1991) found Toxoplasma-like oocysts in feces of 13 of 15 young cats, and Braccini et al. (Reference Braccini, Chaplin, Stobbe, Araújo and Santos1992) reported oocysts in feces of 5 of 25 cats. However, microscopic diagnosis was not confirmed by bioassays in mice. Drinking water could be easily contaminated with oocysts (Bahia-Oliveira et al. Reference Bahia-Oliveira, Jones, Azevedo-Silva, Alves, Oréfice and Addiss2003). Technically, it is difficult to find T. gondii oocysts in water because the number of oocysts in water is low due to the dilution factor (de Moura et al. Reference de Moura, Bahia-Oliveira, Wada, Jones, Tuboi, Carmo, Ramalho, Camargo, Trevisan, Graça, da Silva, Moura, Dubey and Garrett2006).

Another epidemiological means to assess soil contamination due to oocysts is to determine T. gondii prevalence in animals that feed from the ground. The authors have used free-range (FR) chickens (Gallus domesticus) for this purpose. This collaborative project was initiated by 2 of us (J.P. Dubey and S. Gennari) in 2000. Our initial objectives were to determine the prevalence of T. gondii infection in FR chickens, and isolate viable T. gondii to study genetic diversity. Subsequently, these studies were extended to other livestock and wild animals. Chickens were obtained from individual properties that were approximately 1 km apart. The number of chickens from one property was no more than 6 to minimize the clustering effect. Chickens were purchased, killed, bled, and serologically and parasitologically tested. Attempts were made to bioassay 50 or more chickens from each area irrespective of the serological status of chickens. Infected chickens were found on most properties or individual houses sampled (Table 8).

Table 8. Serological prevalence of Toxoplasma gondii antibodies in free-range chickens from different states, counties or areas of Brazil

a IFA, others were done by MAT.

b Additional isolates from tissues pooled from several chickens.

In addition to indicators of soil contamination these infected chickens could be a source of infection for cats and possibly humans. These FR chickens are frequently slaughtered at home and viscera are often not properly disposed off. Although chickens are usually cooked well before human consumption, improper hygiene while handling and cooking chickens could be a source of infection for people.

Oocyst shedding by wild felids

A large number of wild felids in most of the zoological parks and breeding centres in Brazil had antibodies to T. gondii (Table S6, online version only). Pena et al. (Reference Pena, Marvulo, Horta, Silva, Silva, Siqueira, Lima, Vitaliano and Gennari2011) isolated viable T. gondii from muscles of a captive jaguarandi that died of trauma. There is no information concerning prevalence of T. gondii in free-ranging wild felids in Brazil. The high seropositivity in captive wild felids suggests that they have already shed oocysts and contaminated the zoo environment. In isolated Amerindians, Mato Grosso, 80·4% of 148 people surveyed had T. gondii antibodies (Amendoeira et al. Reference Amendoeira, Sobral, Teva, de Lima and Klein2003). These people live on a large area with little contact with non-Indians, do not have pet cats, and do not eat meat. They eat insects and vegetables, including mushrooms. The authors speculate that T. gondii oocysts excreted by wild felids in the area could contaminate soil and vegetation. In one report 86·3% of 95 free-ranging Amazon River dolphins from Amazonas were seropositive to T. gondii (Table S7, online version only). These herbivorous dolphins most likely became infected by ingesting river waters contaminated with oocysts from wild felids (most likely jaguars) because domestic cats are unlikely in this environment.

Role of dogs in transmission of T. gondii

There have been no epidemiological studies to assess transmission of T. gondii from dogs to people in Brazil but antibodies to T. gondii have been reported widely in dogs in Brazil (Table S7, online version only). How dogs become infected with T. gondii is unknown. They do serve as indicators of environmental contamination with T. gondii because of close association with humans. Higher T. gondii prevalence in stray and farm dogs than in pets suggests that eating infected prey is an important source of infection (de Souza et al. 2003).

Transmission by infected meat

Millions of food animals are slaughtered for human consumption yearly in Brazil. Serological surveys indicate that up to 90% of domestic and wild animals had antibodies to T. gondii, and viable T. gondii was isolated from a variety of animals in Brazil. Details of isolation by bioassays are as follows:

Pigs

Up to 90% of pigs surveyed in Brazil had T. gondii antibodies (Table 9), and viable parasites were isolated from tissues of pigs (Table 10). Jamra et al. (Reference Jamra, Deane and Guimarães1969) tested 83 samples of pork from butcher shops, and grocery stores in São Paulo city but there is no information on the number of pigs that were the sources for these pork samples; 5 samples contained viable T. gondii. At about the same time Amaral and Macruz (1968, 1969) found viable T. gondii in 8 of 25 diaphragms, also from São Paulo. Frazão-Teixeira et al. (Reference Frazão-Teixeira, de Oliveira, Pelissari-Sant’ Ana and Lopes2006, Reference Frazão-Teixeira, Sundar, Dubey, Grigg and de Oliveira2011) isolated viable T. gondii from samples of brains and hearts from the butcher shops in Campos dos Goytacazes, RJ but it is uncertain if the hearts and brains were from the same or different pigs. Bezerra et al. (Reference Bezerra, Carvalho, Guimarães, Rocha, Silva, Wenceslau and Albuquerque2012) isolated viable T. gondii by bioassay of pooled brains and tongues of 5 of the 20 pig heads from small farms and pork butchers in Ilhéus, Bahia. In these studies, the sources of pigs, their ages, and serological status were unknown. Dos Santos et al. (Reference dos Santos, de Carvalho, Ragozo, Soares, Amaku, Yai, Dubey and Gennari2005) tested 286 market-age 6–8 month old pigs, from 17 small poorly managed farms in Jaboticabal, SP. Of these, 49 (17%) were seropositive by MAT. Tissues were collected for bioassay when these pigs were slaughtered. Viable T. gondii was isolated from tissues of 7 (MAT titres 100–1 pig, 200–4 pigs, 1600–2 pigs) pigs. Such information is needed for market-age pigs raised under different management conditions in Brazil.

Table 9. Serological prevalence of Toxoplasma gondii antibodies in pigs in Brazil

a Personal communication.

Table 10. Isolation of viable Toxoplasma gondii from animals in Brazil

a B = brain, H = heart, L= lung, M = skeletal muscle, S = spleen, T = tongue.

b Figures in bold are the number of seropositive animals bioassayed.

c Figures in parenthesis are the number of animals serologically tested.

d Seronegative (MAT < 1:10).

e Pena et al. (Reference Pena, Marvulo, Horta, Silva, Silva, Siqueira, Lima, Vitaliano and Gennari2011) isolated viable T. gondii from 1 BLACK-EARED OPOSSUM (Didelphis aurita, designatedTgOpBr1), 1 JAGUARUNDI (Puma yagouaroundi, designatedTgJaBr1), and 1 HOWLER MONKEY (Alouatta belzebul, designated TgRhHum1) that died in captivity of unrelated causes.

f TgOvBr 1–4, 6–8, 10, 15, 18, 20 from counties Santana do Livramento, TgOvBr 5, 9, 13, 14 Uruguaiana in state of RS, and TgOvBr11,16 from county Ourinhos, 12, 19 Pirajuí, TgOvBr 17 Mandur were from the state of Sao Paulo.

g Isolates from counties: Presidente Prudente (TgShBr1,2), Araçariguama (TgShBr3,4), Araçatuba (TgShBr5), Marilia (TgShBr6,7), Botucatu (TgShBr 8,9), Coronel Macedo (TgShBr10), Dracena (TgShBr11), Engenheiro Coelho (TgShBr12,13,14), Tietê (TgShBr 15,16).

h Isolates from counties: Botucatu, São Paulo (TgGtBr1–7,9, 11, 12), Jardim do Seridó, Rio Grande Norte (TgGtBr8) and Ouro Branco, Rio Grande Norte (TgGtBr10).

i Isolates from counties: Andradina (TgBrCp1–7), Cordeirópolis TgBrCp8–16), Cosmorama (TgBrCp17–22), Ribeirão Preto (TgBrCp23,24), São Paulo (TgBrCp25–31) and Valparaíso (TgBrCp32–36).

j Isolates from counties: Araçariguama (TgCatBr38–41), Colina (TgCatBr42), Conchas (TgCatBr 43–49), Espírito Santodo Pinhal (TgCatBr50–57), Guaíra (TgCatBr58–62),Marília (TgCatBr63,64) Osasco (TgCatBr65,66), Pirassununga (TgCatBr67–73), Ribeirão Preto (TgCatBr74–76), S.J. do Rio Peto (TgCatBr77–80), and São Paulo (TgCatBr81–84).

k São Paulo county.

Sheep

Up to 59% of sheep surveyed in Brazil had T. gondii antibodies (Table 11), and viable parasites were isolated from some of their tissues (Table 10). Spósito Filha et al. (Reference Spósito Filha, do Amaral, Macruz, Rebouças, Santos and Drumond1992) reported isolation of T. gondii from diaphragms of 20 of 136 sheep from the state of Rio Grande do Sul. The identification of 5 of these isolates was based on finding tissue cysts in smears of brains of mice inoculated with ovine tissues; 3 isolates were recognized in the first passage in mice, the fourth isolate on the second passage, and the fifth isolate was detected on the third passage in mice (Spósito Filha et al. Reference Spósito Filha, do Amaral, Macruz, Rebouças, Santos and Drumond1992). In the remaining 15 cases, tissue cysts were identified only in haematoxylin and eosin-stained sections of the brains of mice and not by observation of live parasites; whether these parasites were T. gondii or not could not be confirmed. Da Silva and Langoni (Reference da Silva and Langoni2001) isolated T. gondii from tissues of 34 of 40 seropositive sheep. However, most data were based on finding T. gondii antibodies (1:16 titre by the IFA test) in sera of mice inoculated with ovine tissues. Toxoplasma gondii-like tissue cysts were detected in smears of the brains of mice inoculated with tissues of only 12 sheep and identification of tissue cysts was confirmed in only 4 cases by Giemsa-stained smears of brains of mice inoculated with ovine tissues. It needs to be stressed that identification of T. gondii should always be confirmed by passage of parasites to new mice or by other verifiable methods.

Table 11. Serological prevalence of Toxoplasma gondii antibodies in sheep in Brazil

Ragozo et al. (Reference Ragozo, Yai, Oliveira, Dias, Dubey and Gennari2008) serologically tested 495 sheep from 36 counties in São Paulo State; T. gondii antibodies were found in 24·2% of sheep and seropositivity was present in sheep from all counties. Viable T. gondii was isolated from 16 of these 82 seropositive sheep bioassayed.

Recently, da Silva et al. (Reference da Silva, Langoni, Su and da Silva2011) found T. gondii antibodies in 66 (11%) of 602 sheep from 2 slaughter houses in São Paulo State. These sheep originated in RS and SP States; 51 (11·8%) of 430 sheep from RS and 15 (8·7%) of 172 sheep from SP were seropositive (da Silva et al. personal communication to J.P.D.).Viable T. gondii was isolated from 20 of 66 seropositive sheep (15 of 51 from RS and 5 of 15 from SP) bioassayed in mice (da Silva et al. Reference da Silva, Langoni, Su and da Silva2011). Fifteen of these 20 isolates were from sheep from the state of Rio Grande do Sul (TgOvBr 1–4, 6–8, 10, 15, 18, 20 from Santana do Livramento, TgOvBr 5, 9, 13, 14 from Uruguaiana) and 5 were from sheep from the state of São Paulo (TgOvBr11, 16 from Ourinhos, 12, 19 from Pirajuí, TgOvBr 17 from Manduri, personal communication from authors to J.P.D., data added here not reported by da Silva et al. Reference da Silva, Langoni, Su and da Silva2011).

Goat

Up to 92% of goats surveyed in Brazil had T. gondii antibodies (Table 12), and viable parasites were isolated from their tissues (Table 10). Spósito Filha et al. (Reference Spósito Filha, do Amaral, Santos, Macruz and Rebouças1983) isolated T. gondii from diaphragms of 3 of 95 goats from São Paulo and Cavalcante et al. (Reference Cavalcante, Ferreira, Melo, Fux, Brandão and Vitor2007) isolated T. gondii from the hearts of 2 of 169 goats from Ceará; the low recovery rate was probably related to small fragments of tissues used for bioassay. Silva et al. (Reference Silva, Uzêda, Costa, Santos, Macedo, Abe-Sandes and Gondim2009) detected T. gondii DNA in 8 of 102 tissues of goats from Bahia: brains of 4, hearts of 4, and tongues of 3.

Table 12. Serological prevalence of Toxoplasma gondii antibodies in goats in Brazil

a NS = not stated.

Ragozo et al. (Reference Ragozo, Yai, Oliveira, Dias, Gonçalves, Azevedo, Dubey and Gennari2009) had better success when isolating viable T. gondii. They tested 143 goats and detected T. gondii antibodies in 41 (35·9%) of 114 goats from 6 counties in São Paulo State, 5 (26·3%) of 19 from the state of Rio Grande do Norte but no antibodies in 10 goats from the state of Bahia (data added here, not given by Ragozo et al. Reference Ragozo, Yai, Oliveira, Dias, Gonçalves, Azevedo, Dubey and Gennari2009). Tissues of 26 of these 46 seropositive goats were bioassayed in mice and viable T. gondii was isolated from 12.

Cattle

The high seroprevalence of T. gondii in some surveys of cattle in Brazil (Table 13) is puzzling because viable T. gondii have rarely been isolated from beef worldwide, including Brazil. Viable T. gondii were not isolated from 98 samples of beef from São Paulo (Jamra et al. Reference Jamra, Deane and Guimarães1969), and 98 diaphragms from Belo Horizonte, MG (Passos et al. 1984). Recently, Costa et al. (Reference Costa, da Costa, Lopes, Bresciani, dos Santos, Esper and Santana2011b) isolated T. gondii from 3 of 50 fetuses (brains of 2 and retina of 1) from 50 cows killed at a slaughter house in Jaboticabal, SP; whether fetuses were diseased is unknown.

Table 13. Serological prevalence of Toxoplasma gondii antibodies in miscellaneous domestic animals in Brazil

a Five of 343 (124 E. caballus, 197 E. asinus, 22 E. mulus) animals were positive both by IFA and MAT.

b The horses were killed for meat in a slaughter house in Apucarana but originated in other states. Seroprevalences were: 41·1% of 233 from SP, 23·3% of 131 from PR, 21·3% of 120 from MS, and 13·7% of 77 from MT.

Horses

Viable T. gondii were not isolated from diaphragms of 23 horses in RS and SP; 4 of these animals were seropositive (Spósito Filha et al. Reference Spósito Filha, do Amaral, Macruz, Rebouças and Barci1986). In general, horses are not a good host for T. gondii and seropositivity is low worldwide, except 31·6% seropositivity among 561 horses by Vidotto et al. (Reference Vidotto, Kano, Freire, Mitsuka, Ogawa, Bonesi, Navarro and Franciscon1997) (Table 13).

Rodents

The prevalence of viable T. gondii in these animals is important because they serve as sources of infection for humans and other animals. Capybara (Hydrochoeris hydrochaeris) is a large herbivorous rodent widely prevalent in Brazil; its meat is consumed by people. Capybaras are the largest rodents and can weigh up to 90 kg. They have been domesticated but are also common in the wild. Antibodies to T. gondii were found in 42–75% of capybaras (Table S8, online version only) and viable T. gondii were isolated from a high percentage of seropositive animals (Table 10).

The low prevalence of T. gondii in feral house mice and rats in Brazil is puzzling, if one assumes that the environment is highly contaminated with oocysts. In the largest survey of rodents, T. gondii was isolated from only 1 of 20 Rattus norvegicus, but not from any of the 193 Rattus rattus, and 4 Mus musculus from São Paulo (Muradian et al. Reference Muradian, Ferreira, Lopes, Esmerini, Pena, Soares and Gennari2012). Tissues from all of these rodents were bioassayed in mice and also tested for T. gondii DNA; by PCR DNA was found in tissues of 1 M. musculus, 7 R. rattus, and 2 R. norvegicus. Araújo et al. (Reference Araújo, da Silva, Rosa, Mattei, da Silva, Richini-Pereira and Langoni2010) also reported similar results in rodents from Paraná state; T. gondii was isolated from 1 of 19 M. musculus and 1 of 24 R. rattus; all of these animals were seronegative for T. gondii. Nothing is known of clinical toxoplasmosis in rats and mice under natural conditions in Brazil or anywhere else in the world.

Relative risk of T. gondii transmission from different infected meats

Infected pigs and pork products

Among the food animals, infected pigs are the most likely meat source of T. gondii infection for people in many countries, including Brazil (Dubey Reference Dubey2009b; da Silva et al. Reference Silva, Mota, Faria, Fernandes, Neto, Albuquerque and Dias2010). The ingestion of homemade sausages has long been considered a source of T. gondii infection in southern Brazil, particularly Erechim (Glasner et al. Reference Glasner, Silveira, Kruszon-Moran, Martins, Burnier, Silveira, Camargo, Nussenblatt, Kaslow and Belfort1992b). In addition to reports of recovery of viable T. gondii from pork, T. gondii DNA has been frequently demonstrated in pork in Brazil. Belfort-Neto et al. (Reference Belfort-Neto, Nussenblatt, Rizzo, Muccioli, Silveira, Nussenblatt, Khan, Sibley and Belfort2007) detected T. gondii DNA from 34% of 50 diaphragms and 66% of 50 tongues from pigs from abattoirs in Erechim. DA Silva et al. (Reference da Silva, Mendonça, Pezerico, Domingues and Langoni2005a) reported T. gondii DNA by PCR in 19 of 70 sausages from 55 establishments from São Paulo and Bezerra et al. (Reference Bezerra, Carvalho, Guimarães, Rocha, Silva, Wenceslau and Albuquerque2012) detected T. gondii DNA in brains of 11 and tongues of 9 of 20 pig heads from a butcher shop in Ilhéus, Bahia. Somica Fernandes et al. (Reference Fernandes, Fernandes, Kim, de Albuquerque, Neto, Santos, de Moraes, de Morais and Mota2012) found T. gondii DNA in 21 of 38 seropositive pigs from Pernambuco. However, DNA testing does not distinguish between live and dead parasites. Additionally, salting, curing, and pickling procedures used to make sausages and other preparations do often kill tissue cysts, but these procedures have not been standardized universally (Dubey, Reference Dubey2010a).

Annually in Brazil, approximately 32 million pigs are produced and 2 220 000 tons of pork are consumed. Most edible portions of pork could be infected with live T. gondii and one infected pig could be source of infection for many people (Dubey et al. Reference Dubey, Murrell, Fayer and Schad1986; Tsutsui et al. Reference Tsutsui, Freire, Garcia, Gennari, Vieira, Marana, Prudêncio and Navarro2007). As stated earlier, a whole family had clinical toxoplasmosis epidemiologically linked to consumption of raw pork sausage at a party in Santa Vitória do Palmar, RS (de Almeida et al. Reference de Almeida, de Alencar, do Carmo, de Araújo, Garcia, Reis, Figueiredo, Sperb, Branco, Franco and Hatch2006). High seroprevalence of T. gondii in pigs raised in small back-yard operations is of public health concern (Table 9). As an example, da Silva et al. (Reference Silva, de Souza Neves, Benchimol and de Moraes2008) reported an alarming high rate (86% of 115) of T. gondii antibodies in small farms (Table 9); the prevalence was probably underestimated because the survey was based on 1:50 titre in the MAT. Little information is available concerning prevalence of T. gondii in pigs raised under different management conditions in Brazil. It is possible to raise T. gondii–free pigs indoors by proper hygiene and rodent and cat control. In a recent report, antibodies to T. gondii were found in 48% of 200 outdoor pigs versus zero prevalence in 300 indoor pigs using identical detection methods (Villalobos et al. Reference Villalobos, Felício, Lara, Cunha, Ogata and Bersano2011).

Infected mutton and goat's milk

There are no data on the frequency of consumption of undercooked mutton in Brazil. As stated earlier in this review an outbreak of toxoplasmosis was linked to eating mutton (Bonametti et al. Reference Bonametti, Passos, da Silva and Bortoliero1997a,Reference Bonametti, Passos, da Silva and Macedob). The sheep and goat population is increasing in Brazil. Although there are no documented cases of toxoplasmosis acquired through drinking unpasteurized goat's milk, T. gondii infection is widely prevalent in dairy goats in Brazil (Table 11). In the largest survey of 72 dairy goats, 25% of goats were seropositive (Cavalcante et al. Reference Cavalcante, Carneiro, Gouveia, Pinheiro and Vitor2008).

Infected beef

The role of cattle and buffaloes in transmission of T. gondii is uncertain because viable parasites have rarely been demonstrated in beef (Santos et al. Reference Santos, de Souza Costa, Gondim, da Silva, Uzêda, Abe-Sandes and Gondim2010b). Cattle and buffaloes are naturally resistant to T. gondii infection and there is evidence that some cows become seronegative after apparently successful infection (Dubey, Reference Dubey2010a). Little is known of the specificity and sensitivity of serological diagnosis of T. gondii infection in cattle because several tests that are used to diagnose toxoplasmosis in other animals give erratic results with bovine sera, and it is difficult to verify specificity using naturally infected cattle. Most of the serological surveys from cattle in Brazil listed in Table 13 were based on IFA and nothing is known of its specificity for detecting T. gondii antibodies in latently infected cattle. Therefore, we cannot access the zoonotic significance of 71% seropositivity (IFA titre 1:40) in 1420 cattle reported by Santos et al. (Reference Santos, Costa, Toniollo, Luvizotto, Benetti, Santos, Matta, Lopes, Oliveira and Oliveira2009). Among all serological tests evaluated, a titre of 1:100 in the MAT appears to be indicative of T. gondii infection in cattle (Dubey, Reference Dubey2010a).

Poultry and eggs

Raw hen's eggs are unlikely to be a source of infection for humans (Dubey, Reference Dubey2010b). Raw eggs should not be consumed by humans, not for fear of getting T. gondii, but more importantly salmonellosis. Data summarized in Table 8 provide ample evidence that chickens raised in back-yard operations have viable T. gondii. In many instances, these chickens are killed at home or in unsupervised slaughter facilities and the viscera are left for scavengers or are improperly disposed of. Toxoplasma gondii infection can be transmitted if care is not taken to wash hands thoroughly after cutting meat and during cooking of meat; however, risk assessment studies have not been undertaken.

In Brazil, 2 220 000 metric tons of poultry are consumed annually, but there is virtually no information on the prevalence of T. gondii in chickens raised in large-scale operations. In small samples of commercially raised chickens, T. gondii antibodies were not found in 185 chickens in states of São Paulo (Meireles et al. Reference Meireles, Galisteo and Andrade2003) and 80 chickens in Espírito Santo (Beltrame et al. Reference Beltrame, Pena, Ton, Lino, Gennari, Dubey and Pereira2012).

Transmission by eating meat of other animals

Ingestion of undercooked meat of rabbits, horse, capybaras, and other game animals can be a source of infection. Antibodies to T. gondii were found in many species of wildlife in Brazil (Table S8, online version only) and viable T. gondii were isolated from some of them (Table 10). Congenital toxoplasmosis was diagnosed in a child born to a 24-year-old French woman who had eaten uncooked horse meat imported from Brazil (Pomares et al. Reference Pomares, Ajzenberg, Bornard, Bernardin, Hasseine, Dardé and Marty2011).

CLINICAL TOXOPLASMOSIS IN OTHER ANIMALS

Dogs

Primary toxoplasmosis is rarely clinical in dogs (Dubey, Reference Dubey2010a). In most cases clinical toxoplasmosis is seen in immunosuppressed dogs, often with distemper virus infection (Dubey and Beattie, Reference Dubey and Beattie1988). Earlier reports of canine toxoplasmosis are summarized in Table S9 (online version only). We are not aware of clinical canine toxoplasmosis reports from Brazil in the last 30 years.

Sheep and goats

Toxoplasmosis is a leading cause of ovine and caprine abortions in many countries and this has been known since the 1950s (see Dubey and Beattie, Reference Dubey and Beattie1988; Dubey, Reference Dubey2009a). However, T. gondii was only recently reported in goat and ovine fetuses in Brazil (Pescador et al. Reference Pescador, Oliveira, Pedroso, Okuda, Corbellini and Driemeier2007; de Moraes et al. Reference de Moraes, da Costa, Dantas, da Silva and Mota2011). Pescador et al. (Reference Pescador, Oliveira, Pedroso, Okuda, Corbellini and Driemeier2007) examined 6 aborted fetuses, stillborn and weak newborn goats in Rio Grande do Sul. Toxoplasma gondii was demonstrated by immunohistochemical methods in several tissues of 1 fetus that had degenerative lesions. In the 5 other cases, T. gondii DNA but not parasites, was found in caprine tissues. The 6 dams had IFA titres of 1:512 to 1: 2048.

Presumptive evidence of toxoplasmosis abortion was found in 5 of 35 fetuses from 30 ewes from 5 farms in the state of Pernambuco. Toxoplasma gondii DNA was detected in several organs and placentas by nested PCR, and the placentas had necrotic lesions. There is no mention of finding intact T. gondii in aborted fetuses or their fetal membranes or search for other abortifacients. Silva and de la Rue (Reference Silva and de la Rue2006) also reported possible congenital transmission of T. gondii in lambs on a Rio Grande do Sul farm but did not report any abortion. There is need for a comprehensive study to determine the causes of abortion in sheep and goats in Brazil.

Pigs

Fatal toxoplasmosis was reported once in a 28-day-old piglet from a herd in Belo Horizonte, MG (Lamas da Silva, Reference Lamas da Silva1959). The piglet was one of 5 siblings, 4 had died earlier but the aetiology was not investigated. The piglet investigated had diarrhoea, dyspnoea and fever. Toxoplasma gondii was identified histologically in sections of lung, heart, liver, and mesenteric lymph nodes.

Non-human primates

New World monkeys, in general, are highly susceptible to clinical toxoplasmosis, whereas Old World primates are resistant to clinical toxoplasmosis. Nery-Guimarães et al. (Reference Nery-Guimarães, Franken and Chagas1971) first reported clinical toxoplasmosis in a Rhesus monkey (Macacca mulatta, an Old World species) and a tufted capuchin (Cebus apella, a New World species) in Brazil. The M. mulatta was captive in the laboratory at Oswald Cruz Institute, Rio de Janeiro. The C. apella was a pet in suburban Rio de Janeiro. Both animals died after a short illness and tachyzoites were found in their tissues. Of interest is the observation that the Cebus was routinely fed raw meat. The private owner also had 2 black-striped capuchins (Cebus libidinosus) that were not ill but had dye test titres of 1:64 (Nery-Guimarães et al. Reference Nery-Guimarães and Franken1971).

Little is known of clinical toxoplasmosis in New World primates in the wild. In nature, these animals are herbivores and live in treetops and thus are unlikely to be exposed to T. gondii. The finding of T. gondii antibodies in some species of capuchin and howler monkeys in the wild indicates that some of these New World primates survive T. gondii exposure (Table S7). However, several other species of New World primates are highly susceptible to clinical toxoplasmosis experimentally and there are many worldwide reports of clinical toxoplasmosis in these animals in captivity (Dubey and Beattie, Reference Dubey and Beattie1988; Dubey, Reference Dubey2010a). In Brazil, disseminated toxoplasmosis was diagnosed in 3 squirrel monkeys (Saimiri sciureus), 7 golden-headed lion tamarins (Leontopithecus chrysomelas), 3 emperor marmosets (Saguinus imperator), 1 golden-handed marmoset (Saguinus midus), 1 black marmoset (Saguinus niger), 5 wooly monkeys (Lagothrix lagotricha), 1 black tifted ear marmoset (Callithrix penicillata), 1 night monkey (Aotus triviragatus), 1 black lion tamarin (Leontopithecus chrysopygus), 2 golden lion tamarins (Leontopithecus rosalia), 6 brown howler monkeys (Alouatta fusca), and 2 white ear-tufted marmosets (Callithrix jacchus) that were examined post-mortem during 1991 to 2001 (Epiphanio et al. Reference Epiphanio, Catão-Dias and Guimarães1999, Reference Epiphanio, Guimarães, Fedullo, Correa and Catão-Dias2000, Reference Epiphanio, Sá, Teixeira and Catão-Dias2001, Reference Epiphanio, Sinhorini and Catão-Dias2003); half of these animals died peracutely without any clinical signs. Pneumonitis and hepatitis were the main lesions (Epiphanio et al. Reference Epiphanio, Sinhorini and Catão-Dias2003). Fatal toxoplasmosis was also observed in 3 squirrel monkeys from a captive colony in Rio de Janeiro (Andrade et al. Reference Andrade, Coelho, Amendoeira, Vicente, Cardoso, Ferreira and Marchevsky2007), and a black-headed night monkey (Aotus nigriceps) from a zoo in Mato Grosso (Antoniassi et al. Reference Antoniassi, Boabaid, Souza, Nakazato, Pimentel, Filho, Pescador, Driemeier and Colodel2011). Disseminated toxoplasmosis was reported in 3 adult captive (Túry et al. Reference Túry, Costa, Pereira, Castro and Vale1999) and 1 free-living (Maluenda et al. Reference Maluenda, Casagrande, Nemer, Kanamura, Kluyber, Teixeira and Matushima2009) Lagothrix lagotrica.

Wild birds

Fatal toxoplasmosis has been reported in pigeons (Columba livia), sometimes in epizootic form (Carini, Reference Carini1911; Pires and Santos, Reference Pires and dos Santos1934; Reis and Nóbrega, Reference Reis and Nóbrega1936; Nóbrega and Reis, Reference Nóbrega and Reis1942; Springer, Reference Springer1942; Dubey, Reference Dubey2002). Affected pigeons were anorexic, dull, emaciated, and had conjuctivitis with demonstrable organisms in ocular exudate and convulsions towards the time of death (Carini, Reference Carini1911; Reis and Nóbrega, Reference Reis and Nóbrega1936). In pigeons that died, T. gondii was found in many tissues, especially in the lungs and spleen.

Marine mammals

Bandoli and de Oliveira (Reference Bandoli and de Oliveira1977) reported T. gondii tachyzoites and tissue cysts in histological sections of lymph nodes of a wild Tucuxi dolphin (Sotalia fluviaatilis guinensis) that was found dead at the beach in Rio de Janeiro.

GENETIC DIVERSITY AND MOLECULAR EPIDEMIOLOGY

There is an intense debate as to whether virulence of the parasite contributes to the severity of disease in humans or animals in nature (Dubey, Reference Dubey2010a). Prior to the development of genetic markers, T. gondii isolates were grouped by their virulence to outbred mice. During the 1980s and 1990s methods were developed to recognize genetic differences among T. gondii isolates from humans and animals. Based on restriction fragment length polymorphism (RFLP), Howe and Sibley (Reference Howe and Sibley1995) classified T. gondii into 3 genetic Types (I, II, III) and linked mouse virulence to genetic type. They proposed that Type I isolates were 100% lethal to mice, irrespective of the dose, and that Types II and III generally were avirulent for mice. Lehmann et al. (Reference Lehmann, Marcet, Graham, Dahl and Dubey2006), using microsatellite markers recognized geographical differences among T. gondii isolates, with some isolates confined to Brazil whereas others were worldwide in distribution.

In 2002, we initiated a study on the population structure of T. gondii in Brazil based on viable isolates of the parasite (Dubey and Su, Reference Dubey and Su2009). Toxoplasma gondii isolates from a variety of animals from different geographical areas in Brazil (Fig. 1) were intensively studied and high diversity was revealed. Most samples were isolated from chickens, cats, dogs, goats, sheep and capybaras, with a few from other animals; we have listed sources of these isolates from different counties and states of Brazil in Table 14 and in Fig. 1. Most samples were obtained from the eastern parts of the country and São Paulo State.

Table 14. Genotyping of 363 Toxoplasma gondii isolates from Brazil

a Frequency.

Here, we summarized recent genotyping results of 363 samples in Table 14. All samples were typed using 10 PCR-RFLP markers developed recently (Su et al. Reference Su, Shwab, Zhou, Zhu and Dubey2010). From these samples, 106 unique genotypes were identified and each genotype was designated with a ToxoDB PCR-RFLP genotype number. The three most common genotypes were #6, #8 and #11 which accounted for 11·0% (40/363), 3% (23/363) and 5·5% (20/363), respectively. These major genotypes were previously designated as type BrI, BrIII and BrII, respectively (Pena et al. Reference Pena, Gennari, Dubey and Su2008). The Paraná waterborne outbreak was epidemiologically linked to a BrI type strain that was prevalent in cats and chickens in the local area (Vaudaux et al. Reference Vaudaux, Muccioli, James, Silveira, Magargal, Jung, Dubey, Jones, Doymaz, Bruckner, Belfort, Holland and Grigg2010). In our studies only one Type I strain (#10, Table 14) was identified in a chicken from Brazil, and this strain was lost during revival. Two other strains (OH3 from a human and S11 from a pig) are listed in www.ToxoDB.org; however, their isolation history is not clear. We found 1 Type II strain (TgNmBr1) from a feral guinea fowl (Dubey et al. Reference Dubey, Passos, Rajendran, Ferreira, Gennari and Su2011), and 7 Type II variant strains (Type I allele at locus Apico) from chickens from the Fernando Noronha island, off the coast of Brazil (Dubey et al. Reference Dubey, Rajendran, Costa, Ferreira, Kwok, Qu, Su, Varvulo, Alves, Mota and Silva2010) and from sheep in the inland of Brazil (da Silva et al. Reference da Silva, Langoni, Su and da Silva2011). The Type II (including Type II variant) strains that are dominant in Europe, North America and Africa were identified in Brazil with a relative low frequency. Type III strains were also relatively infrequent (12 of 363). Thus, most strains from Brazil were different from those found in other countries.

Overall, there is a lack of a dominant T. gondii genotype, and many genotypes were only identified from a single isolate. These results indicate that existing data identified only a small portion of the overall diversity of T. gondii in animals from Brazil.

We analysed 6 T. gondii populations from animals in São Paulo state (Table 15, Fig. 2). Toxoplasma gondii populations from dog, cat, chicken, capybara, and sheep all have high within-population diversity (gene diversity ∼ = 0·9, mean number of pairwise differences ∼ = 5). Parasite populations of goat have a slightly lower diversity (gene diversity ∼ = 0·7, mean number of pairwise differences ∼ = 2). Pairwise comparisons (Fst tests) suggested that there was no significant difference (P = 0·01) among the dog, cat, chicken, capybara and sheep populations, except the goat population was different from all the others. Since there were only 9 T. gondii isolates from the goat population, the conclusion is not definitive. Therefore, overall there is no clear host preference of parasite genotypes. Many genotypes can infect different animal hosts.

Fig. 2. Pairwise Fst of six Toxoplasma gondii populations from different hosts from São Paulo state, Brazil. Comparison of the populations was conducted using Arlequin ver 3.5. Statistical significance is determined at P = 0·01. The ‘ + ’ sign indicates significant difference between two populations, whereas ‘ − ’ indicates insignificance. The heat map indicates the Fst value.

Table 15. Basic statistics of 6 Toxoplasma gondii populations from São Paulo state, Brazil

Information concerning T. gondii strain diversity from human infection is very limited. Only a few studies have been performed using multilocus genetic markers and the data are fragmented due to use of different markers (de Melo Ferreira et al. Reference Ferreira, Vitor, Carneiro, Brandão and Melo2004, Reference Ferreira, Vitor, Gazzinelli and Melo2006; Khan et al. Reference Khan, Jordan, Muccioli, Vallochi, Rizzo, Belfort, Vitor, Silveira and Sibley2006; Belfort-Neto et al. Reference Belfort-Neto, Nussenblatt, Rizzo, Muccioli, Silveira, Nussenblatt, Khan, Sibley and Belfort2007;Vaudaux et al. Reference Vaudaux, Muccioli, James, Silveira, Magargal, Jung, Dubey, Jones, Doymaz, Bruckner, Belfort, Holland and Grigg2010; Ferreira et al. Reference Ferreira, Vidal, de Mattos, de Mattos, Qu, Su and Pereira-Chioccola2011; Frazão-Teixeira et al. 2011a). Direct PCR-RFLP analysis of 62 tissue samples from patients with toxoplasmosis in São Paulo state was able to genotype 20 samples which belonged to 3 genotypes (#6, #65 and #71, Ferreira et al. Reference Ferreira, Vidal, de Mattos, de Mattos, Qu, Su and Pereira-Chioccola2011). Interestingly, 18 of these 20 samples were genotype #65, suggesting a possible association of this genotype to human toxoplasmosis. However, without isolation of T. gondii strains from patients, this result is only suggestive, and further study on isolated strains is needed to confirm the result. A question of interest is whether T. gondii genotypes are associated with disease phenotypes in human patients. To address this question, a large-scale genetic study of human isolates is necessary. To our knowledge, there is no report of genotyping based on DNA recovered from viable T. gondii isolates from sick or asymptomatic humans in Brazil. Currently, linking the higher burden of toxoplasmosis in congenitally infected children in Brazil to parasite genotype is only a hypothesis. Severe clinical toxoplasmosis in adult immunocompetent people reported from the neighbouring country French Guiana (Demar et al. Reference Demar, Hommel, Djossou, Peneau, Boukhari, Louvel, Bourbigot, Nasser, Ajzenberg, Darde and Carme2011) has not been recognized in Brazil.

ACKNOWLEDGEMENTS

We would like to thank Drs Rubens Belfort Jr., William Cañon-Franco, Shanti Choudhary, Leandra Ferreira, Rima McLeod, Eduardo Bento de Faria, Oliver Kwok, Hilda F. J. Pena, and Jean Carlos Ramos da Silva, for helping to prepare this paper.

Footnotes

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Department of Health and Human Services or the Centers for Disease Control and Prevention or the U.S. Department of Agriculture.

References

REFERENCES

Abreu, M. T., Boni, D., Belfort, R. Jr., Passos, A., Garcia, A. R., Muccioli, C., Soriano, E., Nussenblatt, R. and Silveira, C. (1998). Toxoplasmose ocular em Venda Nova do Imigrante, ES, Brasil. Arquivos Brasileiros de Oftalmologia 61, 540545.CrossRefGoogle Scholar
Aigner, C. P., da Silva, A. V., Sandrini, F., de Sá Osório, P., Poiares, L., and Largura, A. (2010). Real-time PCR-based quantification of Toxoplasma gondii in tissue samples of serologically positive outdoor chickens. Memórias do Instituto Oswaldo Cruz. 105, 935937.CrossRefGoogle ScholarPubMed
Albuquerque, G. R., Munhoz, A. D., Flausino, W., Silva, R. T., Almeida, C. R. R., Medeiros, S. M., and Lopes, C. W. G. (2005). Prevalência de anticorpos anti-Toxoplasma gondii em bovinos leiteiros do vale do Paraíba Sul Fluminense, estado do Rio de Janeiro. Revista Brasileira de Parasitologia Veterinária. 14, 125128.Google Scholar
Aleixo, A. L. Q. C., Benchimol, E. I., Neves, E. S., Silva, C. S. P., Coura, L. C. and Amendoeira, M. R. R. (2009). Frequência de lesões sugestivas de toxoplasmose ocular em uma população rural do Estado do Rio de Janeiro. Revista da Sociedade Brasileira de Medicina Tropical 42, 165169.CrossRefGoogle ScholarPubMed
Alencar, A. and Schäffer, G. (1971). Aspectos histopatológicos da encefalite aguda toxoplásmica (humana e experimental). Memórias do Instituto Oswaldo Cruz 69, 463473.CrossRefGoogle Scholar
Alvarenga, D. P., Couto, M. F. and Pessoa, V. F. (2007). Perceptual visual filling-in of toxoplasmic retinochoroiditis scotomas. NeuroReport. 18, 16791681.CrossRefGoogle ScholarPubMed
Alves, J. A. B., de Oliveira, L. A. R., de Oliveira, M. F. B., Araújo, R. M., Santos, R. C. S., Abud, A. C. F., and de Melo Inagaki, A. D. (2009). Prevalência de anticorpos anti-Toxoplasma gondii em mulheres grávidas. Revista Enfermagem Uerj 17, 107110.Google Scholar
Alves, J. M., Magalhães, V. and Gomes de Matos, M. A. (2010 a). Retinocoroidite toxoplásmica em pacientes com AIDS e neurotoxoplasmose. Arquivos Brasileiros de Oftalmologia 73, 150154.CrossRefGoogle Scholar
Alves, J. M., Magalhães, V. and Gomes de Matos, M. A. (2010 b). Avaliação oftalmológica em pacientes com AIDS e neurotoxoplasmose. Revista da Sociedade Brasileira de Medicina Tropical 43, 3640.CrossRefGoogle Scholar
Amaral, V., Santos, S. M., Netto, J. B. and Rebouças, M. M. (1976 a). Levantamento da toxoplasmose suína latente, no Estado de São Paulo, Brasil. Ciência e Cultura 28, 459.Google Scholar
Amaral, V., Santos, S. M., Ribeiro, L. O. C. and Rebouças, M. M. (1976 b). Toxoplasma gondii: isolamento a partir de fezes de gatos domésticos, naturalmente infectados. Ciência e Cultura 28, 459460.Google Scholar
Amendoeira, M. R. R. and Coutinho, S. G. (1981). Indirect immunofluorescence (IgG and IgM) tests for toxoplasmosis on 203 persons, with no symptomatology suggesting the disease, located in the city of Rio de Janeiro. Serological follow up one to two years later. Memórias do Instituto Oswaldo Cruz 76, 397407.CrossRefGoogle Scholar
Amendoeira, M. R. R. and Coutinho, S. G. (1982). Isolation of Toxoplasma gondii from the saliva and tonsils of a three-year-old child. Journal of Infectious Diseases 145, 587.CrossRefGoogle ScholarPubMed
Amendoeira, M. R. R., Sobral, C. A. Q., Teva, A., de Lima, J. N., and Klein, C. H. (2003). Inquérito sorológico para a infecção por Toxoplasma gondii em ameríndios isolados, Mato Grosso. Revista da Sociedade Brasileira de Medicina Tropical 36, 671676.CrossRefGoogle Scholar
Anand, R., Jones, C. W., Ricks, J. H., Sofarelli, T. A. and Hale, D. C. (2012). Acute primary toxoplasmosis in travelers returning from endemic countries. Journal of Travel Medicine 19, 5760.CrossRefGoogle ScholarPubMed
Anderlini, G. A., Mota, R. A., Faria, E. B., Cavalcanti, E. F. T. S. F., Valença, R. M. B., Pinheiro Júnior, J. W., de Albuquerque, P. P. F. and Neto, O. L. S. (2011). Occurrence and risk factors associated with infection by Toxoplasma gondii in goats in the state of Alagoas, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 44, 157162.CrossRefGoogle ScholarPubMed
Andrade, G. M. Q., Vasconcelos-Santos, D. V., Carellos, E. V. M., Romanelli, R. M. C., Vitor, R. W. A., Carneiro, A. C. A. V. and Januario, J. N. (2010). Congenital toxoplasmosis from a chronically infected woman with reactivation of retinochoroiditis during pregnancy. Journal de Pediatria 86, 8588.CrossRefGoogle ScholarPubMed
Andrade, M. C. R., Coelho, J. M. C. O., Amendoeira, M. R. R., Vicente, R. T., Cardoso, C. V. P., Ferreira, P. C. B. and Marchevsky, R. S. (2007). Toxoplasmosis in squirrel monkeys: histological and immunohistochemical analysis. Ciência Rural, Santa Maria 37, 17241727.CrossRefGoogle Scholar
Antoniassi, N. A. B., Boabaid, F. M., Souza, R. L., Nakazato, L., Pimentel, M. F. A., Filho, J. O. X., Pescador, C. A., Driemeier, D. and Colodel, E. M. (2011). Granulomatous meningoencephalitis due to Toxoplasma gondii in a black-headed night monkey (Aotus nigriceps). Journal of Wildlife Zoo Medicine 42, 118120.CrossRefGoogle Scholar
Araujo, F. G. (1970). Anticorpos anti-Toxoplasma gondii em doadores de sangue. Revista do Instituto de Medicina Tropical de São Paulo 12, 105111.Google Scholar
Araújo, F. A. P., Silva, N. R. S., Chaplin, E. L. and Santos, E. B. (1984). Prevalência de anticorpos toxoplásmicos em soros de caprinos da região da Grande Porto Alegre/RS. Arquivos da Faculdade de Veterinária UFRGS 12, 3540.Google Scholar
Araujo, F. A. P. and Souza, W. J. S. (1997). Antibody response against Toxoplasma gondii (Apicomlexa) measured by indirect fluorescent antibody technique in pigs naturally infected in the area of Great Erechim, RS, Brazil. Arquivos da Faculdade de Veterinária UFRGS Porto Alegre 25, 7583.Google Scholar
Araujo, F. A. P., Santos, J. R. and Souza, W. J. S. (1998 a). Detection on Toxoplasma gondii infection in naturally infected pigs by enzyme-linked immunosorbent assay (ELISA) in the area of Great Erechim, RS, Brasil. Arquivos da Faculdade de Veterinária UFRGS Porto Alegre 26, 5765.Google Scholar
Araujo, F. A. P., Santos, J. R. and Souza, W. J. S. (1998 b). Standardization of the enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies for Toxoplasma gondii in swine (Sus scrofa) sera. Arquivos da Faculdade de Veterinária UFRGS Porto Alegre 26, 94102.Google Scholar
Araújo, J. B., da Silva, A. V., Rosa, R. C., Mattei, R. J., da Silva, R. C., Richini-Pereira, V. B. and Langoni, H. (2010). Isolation and multilocus genotyping of Toxoplasma gondii in seronegative rodents in Brazil. Veterinary Parasitology 174, 328331.CrossRefGoogle ScholarPubMed
Araújo Neto, J. O., Azevedo, S. S., Gennari, S. M., Funada, M. R., Pena, H. F. J., Araújo, A. R. C. P., Batista, C. S. A., Silva, M. L. C. R., Gomes, A. A. B., Piatti, R. M. and Alves, C. J. (2008). Prevalence and risk factors for anti-Toxoplasma gondii antibodies in goats of the Seridó Oriental microregion, Rio Grande do Norte state, Northeast region of Brazil. Veterinary Parasitology 156, 329332.CrossRefGoogle Scholar
Areal, K. R. and Miranda, A. E. (2008). Soroprevalência de toxoplasmose em gestantes atendidas na rede básica de saúde de Vitória, ES. NewsLab 87, 122129.Google Scholar
Arevalo, J. F., Belfort, R. Jr., Muccioli, C. and Espinoza, J. V. (2010). Ocular toxoplasmosis in the developing world. International Ophthalmology Clinics 50, 5769.CrossRefGoogle ScholarPubMed
Arruda, R. F., Muccioli, C. and Belfort, R. Jr. (2004). Achados oftalmológicos em infectados pelo HIV na era pós-HAART e comparação com série de pacientes avaliados no período pré-HAART. Revista da Associação Médica Brasileira 50, 148152.CrossRefGoogle ScholarPubMed
Avelino, M. M., Campos, D. Jr., de Parada, J. C. B. and de Castro, A. M. (2003). Pregnancy as a risk factor for acute toxoplasmosis seroconversion. European Journal of Obstetrics & Gynecology and Reproductive Biology 108, 1924.CrossRefGoogle ScholarPubMed
Avelino, M. M., Campos, D. Jr., de Parada, J. B. and de Castro, A. M. (2004). Risk factors for Toxoplasma gondii infection in women of childbearing age. Brazilian Journal of Infectious Diseases 8, 164174.Google ScholarPubMed
Bahia-Oliveira, L. M. G., Jones, J. L., Azevedo-Silva, J., Alves, C. C. F., Oréfice, F. and Addiss, D. G. (2003). Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro State, Brazil. Emerging Infectious Diseases 9, 5562.CrossRefGoogle Scholar
Bahia-Oliveira, L. M. G., Wilken de Abreu, A. M., Azevedo-Silva, J. and Oréfice, F. (2001). Toxoplasmosis in southeastern Brazil: an alarming situation of highly endemic acquired and congenital infection. International Journal for Parasitology 31, 133136.Google Scholar
Bahia, M. D., Oréfice, F. and de Andrade, G. M. Q. (1992). Análise clínica das lesões de retinocoroidite em crianças portadoras de toxoplasmose congênita. Revista Brasileira de Oftalmologia 51, 265271.Google Scholar
Bahia, M. T., Vitor, R. W. A., Caldas, R., Antunes, C. M. F. and Chiari, C. A. (1993). Diagnosis of caprine toxoplasmosis by a dot enzyme-linked immunosorbent assay. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 45, 173182.Google Scholar
Bandoli, J. G. and de Oliveira, C. A. B. (1977). Toxoplasmose em Sotalia guianensis (van Beneden, 1863), Cetacea-Delphinidae. Folha Médica 75, 459468.Google Scholar
Barbosa, C. J. D. G., Molina, R. J., de Souza, M. B., Silva, A. C. A., Micheletti, A. R., dos Reis, M. A., Teixeira, V. P. A. and Silva-Vergara, M. L. (2007). Disseminated toxoplasmosis presenting as sepsis in two AIDS patients. Revista do Instituto de Medicina Tropical de São Paulo 49, 113116.CrossRefGoogle ScholarPubMed
Barbosa, I. R., Holanda, C. M. C. X. and de Andrade-Neto, V. F. (2009). Toxoplasmosis screeningand risk factors amongst pregnant females in Natal, northeastern Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 377382.CrossRefGoogle Scholar
Barbosa, W., Fernandes, W. J., Pinheiro, Z. B., Teixeìra, A. A. and de Oliveira, G. S. C. (1973). Coccidios encontrados em felinos (Felis catus domestica) de Goiânia. Estudo de sua biomorfologia. Revista de Patologia Tropical 2, 311319.Google Scholar
Baruzzi, R. G. (1970). Contribution to the study of the toxoplasmosis epidemiology. Serologic survey among the indians of the Upper Xingu River, Central Brazil. Revista do Instituto de Medicina Tropical de São Paulo 12, 93104.Google Scholar
Beck, S. T., Konopka, C. K., da Silva, A. K. and Diehl, F. P. (2010). Importância do rastreamento sorológico da toxoplasmose em gestantes atendidas em ambulatório de pré-natal de alto risco. Revista Saúde 36, 2936.Google Scholar
Belfort, R. Jr., Hirata, P. S. and de Abreu, M. T. (1978). Uveítes: estudo de 250 casos consecutivos. Arquivos Brasileiros de Oftalmologia 41, 196199.Google Scholar
Belfort, R. N. Jr., Rasmussen, S., Kherani, A., Lodha, N., Williams, G., Fernandes, B. F. and Burnier, M. N. (2010). Bilateral progressive necrotizing retinochoroiditis in an immunocompromised patients: histopathological diagnosis. Acta Ophthalmologica 88, 614615.CrossRefGoogle Scholar
Belfort-Neto, R., Nussenblatt, V., Rizzo, L., Muccioli, C., Silveira, C., Nussenblatt, R., Khan, A., Sibley, L. D. and Belfort, R. Jr. (2007). High prevalence of unusual genotypes of Toxoplasma gondii infection in pork meat samples from Erechim, Southern Brazil. Anais da Academia Brasileira de Ciências 79, 111114.CrossRefGoogle ScholarPubMed
Beltrame, M. A. V., Pena, H. F. J., Ton, N. C., Lino, A. J. B., Gennari, S. M., Dubey, J. P. and Pereira, F. E. L. (2012). Seroprevalence and isolation of Toxoplasma gondii from free-range chickens from Espírito Santo state, southeastern Brazil. Veterinary Parasitology (in the Press). doi:10.1016/j.vetpar.2012.0.03.053.CrossRefGoogle Scholar
Bezerra, R. A., Carvalho, F. S., Guimarães, L. A., Rocha, D. S., Silva, F. L., Wenceslau, A. A. and Albuquerque, G. R. (2012). Comparison of methods for detection of Toxoplasma gondii in tissues of naturally exposed pigs. Parasitology Research 110, 509514.CrossRefGoogle ScholarPubMed
Bezerra, R. A., Paranhos, E. B., Del'Arco, A. E. and Albuquerque, G. R. (2009). Detecção de anticorpos anti-Toxoplasma gondii em suínos criados e abatidos no Estado da Bahia, Brasil. Revista Brasileira de Parasitologia Veterinária 18, 7880.CrossRefGoogle Scholar
Bichara, C. N. C., Canto, G. A. C., Tostes, C. L., Freitas, J. J. S., do Carmo, E. L., Póvoa, M. M. and Silveira, E. C. (2012). Incidence of congenital toxoplasmosis in the City of Belém, State of Pará, Northern Brazil, determined by a neonatal screening program: preliminary results. Revista da Sociedade Brasileira de Medicina Tropical 45, 122124.CrossRefGoogle ScholarPubMed
Bispo, M. S., Faustino, M. A. G., Alves, L. C., Salcedo, J. H. P., Souza, C. H., Sousa, D. P. and Lima, M. M. (2011). Frequência de anticorpos anti-Toxoplasma gondii em propriedades de criação de caprinos e ovinos no estado de Pernambuco. Ciência Animal Brasileira 12, 291297.CrossRefGoogle Scholar
Bittencourt, L. H. F., de Barros Lopes-Mori, F. M. R., Regina Mitsuka-Breganó, R., Valentim-Zabott, M., Freire, L. R., Pinto, S. B. and Navarro, I. T. (2012). Soroepidemiologia da toxoplasmose em gestantes a partir da implantação do Programa de Vigilância da Toxoplasmose Adquirida e Congênita em municípios da região oeste do Paraná. Revista Brasileira de Ginecologia e Obstetrícia 34, 6368.Google ScholarPubMed
Bonametti, A. M., Passos, J. N., da Silva, E. M. K. and Bortoliero, A. L. (1997 a). Surto de toxoplasmose aguda transmitida através da ingestão de carne crua de gado ovino. Revista da Sociedade Brasileira de Medicina Tropical 30, 2125.CrossRefGoogle Scholar
Bonametti, A. M., Passos, J. N., da Silva, E. M. K. and Macedo, Z. S. (1997 b). Probable transmission of acute toxoplasmosis through breast feeding. Journal of Tropical Pediatrics 43, 116.CrossRefGoogle ScholarPubMed
Bonna, I. C. F., Figueiredo, F. B., da Costa, T., Vicente, R. T., Santiago, C. A. D., Nicolau, J. L., das Neves, L. B., Millar, P. R., Sobreiro, L. G. and Amendoeira, M. R. R. (2006). Estudo soroepidemiológico da infecção por Toxoplasma gondii em suínos e frangos, para abate, em região rural do Rio de Janeiro. Revista Brasileira de Ciência Veterinária 13, 186189.CrossRefGoogle Scholar
Borges, A. S. and de Castro Figueiredo, J. F. (2004). Detecção de imunoglobulinas IgG, IgM e IgA anti-Toxoplasma gondii no soro, líquor e saliva de pacientes com síndrome da imunodeficiência adquirida e neurotoxoplasmose. Arquivos de Neuro-Psiquiatria 62, 10331037.CrossRefGoogle Scholar
Bottós, J., Miller, R. H., Belfort, R. N., Macedo, A. C., Belfort, R. Jr. and Grigg, M. E. (2009). Bilateral retinochoroiditis caused by an atypical strain of Toxoplasma gondii. British Journal of Ophthalmology 93, 15461550.CrossRefGoogle ScholarPubMed
Bóia, M. N., Carvalho-Costa, F. A., Sodré, F. C., Pinto, G. M. T. and Amendoeira, M. R. R. (2008). Seroprevalence of Toxoplasma gondii infection among Indian people living in Iauareté, São Gabriel da Cachoeira, Amazonas, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 50, 1720.CrossRefGoogle Scholar
Braccini, G. L., Chaplin, E. L., Stobbe, N. S., Araújo, F. A. P. and Santos, N. R. (1992). Resultados de exames laboratoriais realizados no setor de protozoologia da Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul, Porto Alegre, nos anos 1986 a 1990. Arquivos da Faculdade de Veterinária UFRGS 20, 134149.Google Scholar
Brandão, G. P., Ferreira, A. M., Melo, M. N. and Vitor, R. W. A. (2006). Characterization of Toxoplasma gondii from domestic animals from Minas Gerais, Brazil. Parasite 13, 143149.CrossRefGoogle ScholarPubMed
Bresciani, K. D. S., Gennari, S. M., Serrano, A. C. M., Rodrigues, A. A. R., Ueno, T., Franco, L. G., Perri, S. H. V. and Amarante, A. F. T. (2007). Antibodies to Neospora caninum and Toxoplasma gondii in domestic cats from Brazil. Parasitology Research 100, 281285.CrossRefGoogle ScholarPubMed
Buchignani, B. P. C. and Silva, M. R. B. (1991). Serviço de Visão Subnormal do Hospital das Clínicas de Botucatu: levantamento das causas e resultados. Revista Brasileira de Oftalmologia 50, 305310.Google Scholar
Cademartori, B. G., Farias, N. A. R. and Brod, C. S. (2008). Soroprevalência e fatores de risco à infecção por Toxoplasma gondii em gestantes de Pelotas, sul do Brasil. Revista Panamericana de Infectologia 10, 3035.Google Scholar
Calderaro, A., Picerno, G., Peruzzi, S., Gorrini, C., Chezzi, C. and Dettori, G. (2008). Evaluation of Toxoplasma gondii immunoglobulin G (IgG) and IgM assays incorporating the new Vidia analyzer system. Clinical and Vaccine Immunology 15, 10761079.CrossRefGoogle ScholarPubMed
Camara, V. D., Tavares, W., Ribeiro, M. and Dumas, M. (2003). Manifestações neurológicas de toxoplasmose em AIDS. Jornal Brasileiro de Doenças Sexualmente Transmissíveis 15, 4650.Google Scholar
Caporali, E. H. G., da Silva, A. V., Mendonça, A. O. and Langoni, H. (2005). Comparação de métodos para determinação da prevalência de anticorpos anti-Toxoplasma gondii em suínos dos Estados de São Paulo e Pernambuco – Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 8, 1924.Google Scholar
Carellos, E. V. M., de Andrade, G. M. Q. and de Aguiar, R. A. L. P. (2008). Avaliação da aplicação do protocolo de triagem pré-natal para toxoplasmose em Belo Horizonte, Minas Gerais, Brasil: estudo transversal em puérperas de duas maternidades. Cadernos de Saúde Pública 24, 391401.CrossRefGoogle Scholar
Carini, A. (1911). Infection spontanée du pigeon et du chien due au Toxoplasma cuniculi. Bulletin de la Société de Pathologie Exotique 4, 518519.Google Scholar
Carletti, R. T., Freire, R. L., Shimada, M. T., Ruffolo, B. B., Begale, L. P., Lopes, F. M. R. and Navarro, I. T. (2005). Prevalência da infecção por Toxoplasma gondii em suínos abatidos no Estado do Paraná, Brasil. Semina: Ciências Agrárias, Londrina 26, 563568.Google Scholar
Carneiro, A. C. A. V., Carneiro, M., Gouveia, A. M. G., Guimarães, A. S., Marques, A. P. R., Vilas-Boas, L. S. and Vitor, R. W. A. (2009). Seroprevalence and risk factors of caprine toxoplasmosis in Minas Gerais, Brazil. Veterinary Parasitology 160, 225229.CrossRefGoogle ScholarPubMed
Carvalheiro, C. G., Mussi-Pinhata, M. M., Yamamoto, A. Y., de Souza, C. B. S. and Maciel, L. M. Z. (2005). Incidence of congenital toxoplasmosis estimated by neonatal screening: relevance of diagnostic confirmation in asymptomatic newborn infants. Epidemiology and Infection 133, 485491.CrossRefGoogle ScholarPubMed
Castilho-Pelloso, M. P., Falavigna, D. L. M. and Falavigna-Guilherme, A. L. (2007). Suspected acute toxoplasmosis in pregnant women. Revista de Saúde Pública, São Paulo 41, 2734.CrossRefGoogle ScholarPubMed
Cavalcante, A. C. R., Carneiro, M., Gouveia, A. M. G., Pinheiro, R. R. and Vitor, R. W. A. (2008). Risk factors for infection by Toxoplasma gondii in herds of goats in Ceará, Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 60, 3641.CrossRefGoogle Scholar
Cavalcante, A. C. R., Ferreira, A. M., Melo, M. N., Fux, B., Brandão, G. P. and Vitor, R. W. A. (2007). Virulence and molecular characterization of Toxoplasma gondii isolated from goats in Ceará, Brazil. Small Ruminant Research 69, 7982.CrossRefGoogle Scholar
Cavalcante, G. T., Aguiar, D. M., Camargo, L. M. A., Labruna, M. B., de Andrade, H. F., Meireles, L. R., Dubey, J. P., Thulliez, P., Dias, R. A. and Gennari, S. M. (2006 a). Seroprevalence of Toxoplasma gondii antibodies in humans from rural Western Amazon, Brazil. Journal of Parasitology 92, 647649.CrossRefGoogle ScholarPubMed
Cavalcante, G. T., Aguiar, D. M., Chiebao, D. P., Meireles, L. R., Andrade, H. F., Camargo, L. M. A., Labruna, M. B., Ruiz, V. L. A. and Gennari, S. M. (2004). Ocorrência de anticorpos anti-Toxoplasma gondii em humanos e animais domésticos da zona rural do município de Monte Negro, Rondônia. XIII Congresso Brasileiro de Parasitologia Veterinária & I Simpósio Latino-Americano de Ricketisioses, Ouro Preto, Minas Gerais, Brasil, 2004. Revista Brasileira de Parasitologia Veterinária 13 (Suppl. 1), 217.Google Scholar
Cavalcante, G. T., Aguiar, D. M., Chiebao, D., Dubey, J. P., Ruiz, V. L. A., Dias, R. A., Camargo, L. M. A., Labruna, M. B. and Gennari, S. M. (2006 b). Seroprevalence of Toxoplasma gondii antibodies in cats and pigs from rural western Amazon, Brazil. Journal of Parasitology 92, 863864.CrossRefGoogle ScholarPubMed
Chahade, W. H., de Faria Soares, V., Guimarães, T., Berbert, S. O. T., Szwarc, I. S. and Levi, G. C. (1994). Behçet's syndrome/AIDS/cerebral toxoplasmosis: an unusual association. São Paulo Medical Journal 112, 587590.CrossRefGoogle Scholar
Chaplin, E. L., Silva, N. R. S. and Araújo, F. A. P. (1991). Eliminação de oocistos tipo-Toxoplasma por felinos naturalmente infectados. Arquivos da Faculdade de Veterinária UFRGS 19, 7781.Google Scholar
Chaplin, E. L., Silva, N. R. S., Sebben, J. C., Araújo, F. A. P. and Mendez, L. D. V. (1984). Cadeia epidemiológica da toxoplasmose em Guaporé/RS, relacionando humanos e seus animais domésticos. Arquivos da Faculdade de Veterinária UFRGS 12, 2534.Google Scholar
Chiari, C. A., Lima, J. D., Lima, W. S. and Antunes, C. M. F. (1987). Soro-epidemiologia da toxoplasmose caprina em Minas Gerais, Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 39, 587609.Google Scholar
Chimelli, L., Rosemberg, S., Hahn, M. D., Lopes, M. B. S. and Barretto Netto, M. (1992). Pathology of the central nervous system in patients infected with the human immunodeficiency virus (HIV): a report of 252 autopsy cases from Brazil. Neuropathology and Applied Neurobiology 18, 478488.CrossRefGoogle ScholarPubMed
Clementino, M. M., Souza, M. F. and Andrade Neto, V. F. (2007). Seroprevalence and Toxoplasma gondii-IgG avidity in sheep from Lajes, Brazil. Veterinary Parasitology 146, 199203.CrossRefGoogle ScholarPubMed
Coelho, D. M., Cerávolo, I. P. and Borges, J. M. (2003). Avaliação sorológica anti-Toxoplasma gondii em gestantes no município de Ipatinga-MG. Revista On-line Unileste www.unilestemg.br/revistaonline/volumes/02/downloads/artigo14.pdf.Google Scholar
Coelho, W. M. D., do Amarante, A. F. T., Apolinário, J. C., Coelho, N. M. D., de Lima, V. M. F., Perri, S. H. V. and Bresciani, K. D. S. (2011). Seroepidemiology of Toxoplasma gondii, Neospora caninum, and Leishmania spp. infections and risk factors for cats from Brazil. Parasitology Research 109, 10091013.CrossRefGoogle ScholarPubMed
Coêlho, R. A. L., Kobayashi, M. and Carvalho, L. B. (2003). Prevalence of IgG antibodies specific to Toxoplasma gondii among blood donors in Recife, northeast Brazil. Revista do Instituto de Medicina Tropical de São Paulo 45, 229231.CrossRefGoogle ScholarPubMed
Colombo, F. A., Vidal, J. E., Penalva de Oliveira, A. C., Hernandez, A. V., Bonasser-Filho, F., Nogueira, R. S., Focaccia, R. and Pereira-Chioccola, V. L. (2005). Diagnosis of cerebral toxoplasmosis in AIDS patients in Brazil: importance of molecular and immunological methods using peripheral blood samples. Journal of Clinical Microbiology 43, 50445047.CrossRefGoogle ScholarPubMed
Commodaro, A. G., Belfort, R. N., Rizzo, L. V., Muccioli, C., Silveira, C., Burnier, M. N. Jr. and Belfort, R. Jr. (2009). Ocular toxoplasmosis – an update and review of the literature. Memórias do Instituto Oswaldo Cruz 104, 345350.CrossRefGoogle ScholarPubMed
Correia, C. C., Melo, H. R. L. and Costa, V. M. A. (2010). Influence of neurotoxoplasmosis characteristics on real-time PCR sensitivity among AIDS patients in Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 104, 2428.CrossRefGoogle ScholarPubMed
Corrêa, F. M. A., Salata, E. and Oliveira, M. R. (1978). Toxoplasma gondii: diagnóstico pela imunofluorescência indireta em suínos no estado de São Paulo, Brasil. Arquivos do Instituto Biológico (São Paulo) 45, 209212.Google Scholar
Corrêa, M. O. A., Hyakutake, S. and Tognoli, J. F. (1972). Incidência de reagentes à prova da imunofluorescência indireta para o diagnóstico da toxoplasmose entre escolares do município de Presidente Prudente. Revista do Instituto Adolfo Lutz 32, 4146.Google Scholar
Costa, A. J. and Costa, E. P. (1978). Frequência de bovinos reagentes à imunofluorescência indireta para Toxoplasma gondii em Poços de Caldas, M.G., Brasil. Arquivos da Escola de Veterinária da Universidade Federal de Minas Gerais 30, 4751.Google Scholar
Costa, A. J., Avila, F. A., Kasai, N., Paulillo, A. C., da Silva, M. B. and Galesco, H. (1978). Anticorpos anti-Toxoplasma em soros de bovinos do município de Jaboticabal; São Paulo, Brasil. Arquivos do Instituto Biológico (São Paulo) 45, 299301.Google Scholar
Costa, A. J., Ishizuka, M. M., Marques, L. C., Vidotto, O., Rocha, U. F. and Ikeda, A. (1986). Toxoplasmosis frequency in equines from the north region of São Paulo State, Brazil. Ars Veterinaria 2, 7579.Google Scholar
Costa, D. G. C., Marvulo, M. F. V., Silva, J. S. A., Santana, S. C., Magalhães, F. J. R., Lima Filho, C. D. F., Ribeiro, V. O., Alves, L. C., Mota, R. A., Dubey, J. P. and Silva, J. C. R. (2012 a). Seroprevalence of Toxoplasma gondii in domestic and wild animals from the Fernando de Noronha, Brazil. Journal of Parasitology (in the Press).CrossRefGoogle Scholar
Costa, F. F., Gondim, A. P. S., de Lima, M. B., Braga, J. U., de Souza Vieira, L. J. E. and Araujo, M. A. L. (2012 b). Preventive behavior for toxoplasmosis in pregnant adolescents in the state of Ceara, Brazil. BMC Public Health 12, 73.CrossRefGoogle ScholarPubMed
Costa, G. H. N., Cabral, D. D., Varandas, N. P., Sobral, E. A., Borges, F. A. and Castagnolli, K. C. (2001 a). Freqüência de anticorpos anti-Neospora caninum e anti-Toxoplasma gondii em soros de bovinos pertencentes aos estados de São Paulo e de Minas Gerais. Semina Ciências Agrárias, Londrina 22, 6166.CrossRefGoogle Scholar
Costa, G. H. N., da Costa, A. J., Lopes, W. D. Z., Bresciani, K. D. S., dos Santos, T. R., Esper, C. R. and Santana, Á. E. (2011 b). Toxoplasma gondii: infection natural congenital in cattle and an experimental inoculation of gestating cows with oocysts. Experimental Parasitology 127, 277281.CrossRefGoogle Scholar
Costa, M. A. S., Bezela, A. L., Trindade, C. D. and Neto, J. A. F. (2010). Soroprevalência da toxoplasmose no Hospital Universitário Materno Infantil de São Luís – MA, em 2008. Cadernos de Pesquisa 17, 6266.Google Scholar
Cota, G. F., Assad, E. C. P., Christo, P. P., Giannetti, A. V., dos Santos, J. A. M. and Xavier, M. A. P. (2008). Ventriculitis: a rare case of primary cerebral toxoplasmosis in AIDS patient and literature review. Brazilian Journal of Infectious Diseases 12, 101104.CrossRefGoogle ScholarPubMed
Coutinho, S. G., de Andrade, C. M., Malvar, G. S. and Ferreira, L. F. (1970). Análise comparativa entre as sensibilidades da reação indireta de anticorpos fluorescentes e da reação Sabin-Feldman nã pesquisa de anticorpos séricos para toxoplasmose. Revista da Sociedade Brasileira de Medicina Tropical 4, 315325.CrossRefGoogle Scholar
Coutinho, S. G., de Souza, W. J. S., Camillo-Coura, L., Marzochi, M. C. A. and Amendoeira, M. R. R. (1981). Levantamento dos resultados das reações de imunofluorescência indireta para toxoplasmose em 6079 pacientes de ambulatório ou gestantes no Rio de Janeiro realizadas durante os anos de 1971 a 1977. Revista do Instituto de Medicina Tropical de São Paulo 23, 4856.Google Scholar
Coutinho, S. G., Frias, L. A. M. and Nogueira, J. S. (1972). Resultados da reação indireta de anticorpos fluorescentes para toxoplasmose, (RIAF), em grupos de indivíduos de até 20 anos de idade, no Rio de Janeiro. Revista da Sociedade Brasileira de Medicina Tropical 6, 382384.Google Scholar
Coutinho, S. G., Lobo, R. and Dutra, G. (1982 a). Isolation of Toxoplasma from the soil during an outbreak of toxoplasmosis in a rural area in Brazil. Journal of Parasitology 68, 866868.CrossRefGoogle Scholar
Coutinho, S. G., Morgado, A., Wagner, M., Lobo, R. and Sutmoller, F. (1982 b). Outbreak of human toxoplasmosis in a rural area. a three year serologic follow-up study. Memórias do Instituto Oswaldo Cruz 77, 2936.CrossRefGoogle Scholar
Cruz, M. A., Ullmann, L. S., Montaño, P. Y., Hoffmann, J. L., Langoni, H. and Biondo, A. W. (2011). Seroprevalence of Toxoplasma gondii infection in cats from Curitiba, Paraná, Brazil. Revista Brasileira de Parasitologia Veterinária 20, 256258.CrossRefGoogle ScholarPubMed
Cury, P. M., Pulido, C. F., Furtado, V. M. G. and da Palma, F. M. C. (2003). Autopsy findings in AIDS patients from a reference hospital in Brazil: analysis of 92 cases. Pathology Research and Practice 199, 811814.CrossRefGoogle ScholarPubMed
D'Angelino, J. L. and Ishizuka, M. M. (1986). Toxoplasmose suína. 3. Avaliação da prevalência de infecção toxoplásmica em rebanhos suínos pela prova de imunofluorescência indireta e hemaglutinação. Boletin de la Officina Sanitaria Panamericana 100, 634647.Google Scholar
da Serra-Freire, N. M., Norberg, A. N. and Gazeta, G. S. (1994). Toxoplasmose caprina no Rio de Janeiro, Brasil. Parasitologia al Dia 18, 7781.Google Scholar
da Silva, A. V. and Langoni, H. (2001). The detection of Toxoplasma gondii by comparing cytology, histopathology, bioassay in mice, and the polymerase chain reaction (PCR). Veterinary Parasitology 97, 191198.CrossRefGoogle ScholarPubMed
da Silva, A. V., Boareto, H., Isbrecht, F. B., da Silva, R. C. and Langoni, H. (2008). Ocorrência de anticorpos anti-Toxoplasma gondii em suínos da região oeste do Paraná, Brasil. Veterinária e Zootecnia 15, 263266.Google Scholar
da Silva, A. V., Cunha, E. L. P., Meireles, L. R., Gottschalk, S., Mota, R. A. and Langoni, H. (2003 a). Toxoplasmose em ovinos e caprinos: estudo soroepidemiológico em duas regiões do Estado de Pernambuco, Brasil. Ciência Rural, Santa Maria 33, 115119.CrossRefGoogle Scholar
da Silva, A. V., Cutolo, A. A. and Langoni, H. (2002). Comparação da reação de imunofluorescência indireta e do método de aglutinação direta na detecção de anticorpos anti-Toxoplasma em soros de ovinos, caprinos, caninos e felinos. Arquivos do Instituto Biológico (São Paulo) 69, 711.Google Scholar
da Silva, A. V., da Silva, R. C. and Zamprogna, T. O. (2010). Toxoplasma gondii im suínos com ênfase na contribuição brasileira. Scientia Medica Porto Alegre 20, 120130.Google Scholar
da Silva, A. V., Gonçalves, G. F., Livero, F. A. R., Bottin, J. M. P., Belinato, F. C., Bastos, E. A., da Silva, R. C. and Langoni, H. (2009). Avaliação de fatores epidemiológicos na ocorrência de anticorpos contra Toxoplasma gondii em cães atendidos em um hospital universitário. Veterinária e Zootecnia 16, 239247.Google Scholar
da Silva, A. V., Mendonça, A. O., Pezerico, S. B., Domingues, P. F., and Langoni, H. (2005 a). Genotyping of Toxoplasma gondii strains detected in pork sausage. Parasitología Latinoamericana 60, 6568.Google Scholar
da Silva, A. V., Pezerico, S. B., de Lima, V. Y., d'Arc Moretti, L., Pinheiro, J. P., Tanaka, E. M., Ribeiro, M. G. and Langoni, H. (2005 b). Genotyping of Toxoplasma gondii strains isolated from dogs with neurological signs. Veterinary Parasitology 127, 2327.CrossRefGoogle ScholarPubMed
da Silva, D. S., Bahia-Oliveira, L. M. G., Shen, S. K., Kwok, O. C. H., Lehmann, T. and Dubey, J. P. (2003 b). Prevalence of Toxoplasma gondii in chickens from an area in southern Brazil highly endemic to humans. Journal of Parasitology 89, 394396.CrossRefGoogle ScholarPubMed
da Silva, N. R. S., da Costa, A. J., Chaplin, E. L. and Souza, S. M. G. (1981). Prevalência de anticorpos toxoplásmicos em soros de ovinos, pela reação de imunofluorescência indireta (IFI), na região de Guaíba, RS. Arquivos da Faculdade de Veterinária UFRGS 9, 101104.Google Scholar
da Silva, R. C., Langoni, H., Su, C. and da Silva, A. V. (2011). Genotypic characterization of Toxoplasma gondii in sheep from Brazilian slaughterhouses: new atypical genotypes and the clonal type II strain identified. Veterinary Parasitology 175, 173177.CrossRefGoogle ScholarPubMed
Daguer, H., Vicente, R. T., da Costa, T., Virmond, M. P., Hamann, W. and Amendoeira, M. R. R. (2004). Soroprevalência de anticorpos anti-Toxoplasma gondii em bovinos e funcionários de matadouros da microrregião de Pato Branco, Paraná, Brasil. Ciência Rural, Santa Maria 34, 11331137.CrossRefGoogle Scholar
Dattoli, V. C. C., Veiga, R. V., Cunha, S. S., Pontes-de-Carvalho, L., Barreto, M. L. and Alcantara-Neves, N. M. (2011). Oocyst ingestion as an important transmission route of Toxoplasma gondii in Brazilian urban children. Journal of Parasitology 97, 10801084.CrossRefGoogle ScholarPubMed
Daufenbach, L. Z., Alves, W. A., Carmo, E. H., Wanderley, Z. D., de Azevedo, J. B., Elisbão, M. A. S., Santos, L. C., Vasconcelos, R. A., da Silva, O. B., da Silva, R. F., Arduino, M. J. and Hatch, D. (2002). Surto de toxoplasmose no município de Santa Isabel do Ivaí – Paraná. Boletim Eletrônico Epidemiológico 2, 19.Google Scholar
de Abreu, M. T., Belfort, R. Jr. and Hirata, P. S. (1982). Fuch's heterochromic cyclitis and ocular toxoplasmosis. American Journal of Ophthalmology 93, 739744.CrossRefGoogle Scholar
de Abreu, M. T., Hirata, P. S., Belfort, R. Jr. and Neto, S. D. (1980). Uveítes em São Paulo. Estudo epidemiológico, clínico e terapêutico. Arquivos Brasileiros de Oftalmologia 43, 1016.Google Scholar
de Almeida, M. A. B., de Alencar, L. R., do Carmo, G. M. I., de Araújo, W. N., Garcia, M. H. O., Reis, A. K. V., Figueiredo, D. M. S., Sperb, A. F., Branco, N., Franco, R. M. B. and Hatch, D. L. (2006). Surto intra familiar de toxoplasmose, Santa Vitória do Palmar-RS, Julho de 2005. Boletim Eletrônico Epidemiológico 6, 17.Google Scholar
de Amorim Garcia, C. A., Oréfice, F., de Oliveira Lyra, C., Bezerra Gomes, A., França, M. and de Amorim Garcia Filho, C. A. (2004). Socioeconomic conditions as determining factors in the prevalence of systemic and ocular toxoplasmosis in northeastern Brazil. Ophthalmic Epidemiology 11, 301317.CrossRefGoogle ScholarPubMed
de Andrade, G. M. Q., de Resende, L. M., Goulart, E. M. A., Siqueira, A. L., Vitor, R. W. A. and Januario, J. N. (2008). Deficiência auditiva na toxoplasmose congênita detectada pela triagem neonatal. Revista Brasileira de Otorrinolaringologia 74, 2128.CrossRefGoogle Scholar
de Araújo, F. A. P., da Silva, N. R. S., Olicheski, A. T., Beck, C., Rodrigues, R. J. D. and Fialho, C. G. (2003). Anticorpos para Toxoplasma gondii em soro de gatos internados no Hospital de Clínicas Veterinárias da UFRGS, Porto Alegre, RS, Brasil, detectados através da técnica de hemaglutinação indireta. Acta Scientiae Veterinariae 31, 8992.CrossRefGoogle Scholar
de Araújo, F. R., Carvalho, C. M. E. and Balbuena, C. B. (1998). Levantamento sorológico para Toxoplasma gondii em bovinos de corte do estado de Mato Grosso do Sul, Brasil. Revista Brasileira de Medicina Veterinária 20, 201203.Google Scholar
de Araújo, F. R., Sarti, E. C., Crocci, A. J., Seabra, V. M. S., Amorim, J. H., Cusinato, F. Q., de Araújo, C. P. and Carvalho, C. M. E. (2000). Anticorpos contra Toxoplasma gondii em estudantes de medicina veterinária de Campo Grande, MS, Brasil. Ciência Rural, Santa Maria 30, 10171019.CrossRefGoogle Scholar
de Azevedo, K. M. L., Setúbal, S., Lopes, V. G. S., Camacho, L. A. B. and de Oliveira, S. A. (2010 a). Congenital toxoplasmosis transmitted by human immunodeficiency-virus infected women. Brazilian Journal of Infectious Diseases 14, 186189.CrossRefGoogle Scholar
de Azevedo, S. S., Pena, H. F. J., Alves, C. J., de Melo Guimarães Filho, A. A., Oliveira, R. M., Maksimov, P., Schares, G. and Gennari, S. M. (2010 b). Prevalence of anti-Toxoplasma gondii and anti-Neospora caninum antibodies in swine from Northeastern Brazil. Revista Brasileira de Parasitologia Veterinária 19, 8084.CrossRefGoogle Scholar
de Carvalho, M., Minguini, N., Moreira, D. C. and Kara-José, N. (1998). Characteristics of a pediatric low-vision population. Journal of Pediatric Ophthalmology & Strabismus 35, 162165.CrossRefGoogle ScholarPubMed
de Faria Couto, J. and Leite, J. M. (2004). Sinais ultra-sonográficos em fetos portadores de toxoplasmose congênita. Revista Brasileira de Ginecologia e Obstetrícia 26, 377382.Google Scholar
de Figueiredo, H. R., Favero, S., Amendoeira, M. R. R. and Cardozo, C. (2010). Inquérito soroepidemiológico para toxoplasmose e avaliação dos condicionantes para sua transmissão em universitários de Campo Grande, Mato Grosso do Sul. Scientia Medica 20, 7175.Google Scholar
de Lima, J. T. R., Ahid, S. M. M., Barrêto, R. A., Pena, H. F. J., Dias, R. A. and Gennari, S. M. (2008). Prevalência de anticorpos anti-Toxoplasma gondii e anti-Neospora caninum em rebanhos caprinos do município de Mossoró, Rio Grande do Norte. Brazilian Journal of Veterinary Research and Animal Science 45, 8186.CrossRefGoogle Scholar
de Mattos, C. C. B., Spegiorin, L. C. J. F., da Silva Meira, C., da Costa Silva, T., da Costa Ferreira, A. I., Nakashima, F., Pereira-Chioccola, V. L. and de Mattos, L. C. (2011). Anti-Toxoplasma gondii antibodies in pregnant women and their newborn infants in the region of São José do Rio Preto, São Paulo, Brazil. São Paulo Medical Journal 129, 261266.CrossRefGoogle Scholar
de Moraes, É. P. B. X., da Costa, M. M., Dantas, A. F. M., da Silva, J. C. R. and Mota, R. A. (2011). Toxoplasma gondii diagnosis in ovine aborted fetuses and stillborns in the State of Pernambuco, Brazil. Veterinary Parasitology 183, 152155.CrossRefGoogle ScholarPubMed
de Moura, A. B., Osaki, S. C., Zulpo, D. L. and Marana, E. R. M. (2007). Ocorrência de anticorpos contra Toxoplasma gondii em suínos e ovinos abatidos no município de Guarapuava, PR, Brasil. Revista Brasileira de Parasitologia Veterinária 16, 5456.Google Scholar
de Moura, L., Bahia-Oliveira, L. M. G., Wada, M. Y., Jones, J. L., Tuboi, S. H., Carmo, E. H., Ramalho, W. M., Camargo, N. J., Trevisan, R., Graça, R. M. T., da Silva, A. J., Moura, I., Dubey, J. P. and Garrett, D. O. (2006). Waterborne toxoplasmosis, Brazil, from field to gene. Emerging Infectious Diseases 12, 326329.CrossRefGoogle Scholar
de Oliveira, B. C. (2002). Toxoplasmose: perfil sorológico durante a gravidez e repercussões neonatais em maternidade pública de referência na cidade de Belém do Pará. [Dissertation]. São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo 1–84.Google Scholar
de Oliveira, J. F., Greco, D. B., Oliveira, G. C., Christo, P. P., Guimarães, M. D. C. and Corrêa-Oliveira, R. (2006). Neurological disease in HIV-infected patients in the era of highly active antiretroviral treatment: a Brazilian experience. Revista da Sociedade Brasileira de Medicina Tropical 39, 146151.CrossRefGoogle Scholar
de Oliveira, K. R., Domingues, P. F., Langoni, H., da Silva, R. C. and Gottschalk, S. (2007). Detecção de anticorpos para Toxoplasma gondii em soros de suínos criados sob condições rústicas na microrregião de Registro – SP, pelo método de aglutinação direta (MAD). Veterinária e Zootecnia 14, 169175.Google Scholar
de Oliveira, L. N., Costa, L. M., de Melo, C. B., Silva, J. C. R., Bevilaqua, C. M. L., Azevedo, S. S., Muradian, V., Araújo, D. A. F. V., Dubey, J. P. and Gennari, S. M. (2009). Toxoplasma gondii isolates from free-range chickens from the Northeast Region of Brazil. Journal of Parasitology 95, 235237.CrossRefGoogle ScholarPubMed
de Oliveira-Sequeira, T. C. G., Amarante, A. F. T., Salata, E. and Sogayar, R. (1993). Serological survey for Toxoplasma infection in sheep in São Paulo, Brazil. Veterinária e Zootecnia 5, 121125.Google Scholar
de Resende, L. M., de Andrade, G. M. Q., de Azevedo, M. F., Perissinoto, J., Vieira, A. B. C. and Congenital Toxoplasmosis Brazilian Group of the Universidade Federal de Minas Gerais (CTBG-UFMG). (2010). Congenital toxoplasmosis: auditory and language outcomes in early diagnosed and treated children. Scientia Medica 20, 1319.CrossRefGoogle Scholar
de Souza Neves, E., Kropf, A., Bueno, W. F., Bonna, I. C. F., Curi, A. L. L., Amendoeira, M. R. R. and Fernandes Filho, O. (2011). Disseminated toxoplasmosis: an atypical presentation in an immunocompetent patient. Tropical Doctor 41, 5960.CrossRefGoogle Scholar
de Souza, E. C. and Casella, A. M. B. (2009). Clinical and tomographic features of macular punctate outer retinal toxoplasmosis. Archives of Ophthalmology 127, 13901394.CrossRefGoogle ScholarPubMed
de Souza, L. M., Nascimento, A. A., Furuta, P. I., Basso, L. M. S., Silveira, D. M. and Costa, A. J. (2001). Detecção de anticorpos contra Neospora caninum e Toxoplasma gondii em soros de bubalinos (Bubalus bulalis) no Estado de São Paulo, Brasil. Semina Ciências Agrárias, Londrina 22, 3948.CrossRefGoogle Scholar
de Souza, S. L. S., Feitoza, P. V. S., de Araújo, J. R., de Andrade, R. V. and Ferreira, L. C. L. (2008). Causas de óbito em pacientes com síndrome da imunodeficiência adquirida, necropsiados na Fundação de Medicina Tropical do Amazonas. Revista da Sociedade Brasileira de Medicina Tropical 41, 247251.CrossRefGoogle Scholar
de Souza, W. (1974). Fine structure of the conoid of Toxoplasma gondii. Revista do Instituto de Medicina Tropical de São Paulo 16, 3238.Google ScholarPubMed
de Souza, W., DaMatta, R. A. and Attias, M. (2009). Brazilian contribution for a better knowledge on the biology of Toxoplasma gondii. Memórias do Instituto Oswaldo Cruz 104, 149154.CrossRefGoogle Scholar
Deane, L. M. (1963). Inquérito de toxoplasmose e de tripanossomíases realizado no território do Amapá pela III bandeira científica do Centro Acadêmico “Oswaldo Cruz” da Faculdade de Medicina da Universidade de São Paulo. Revista de Medicina 47, 112.Google Scholar
Delair, E., Latkany, P., Noble, A. G., Rabiah, P., McLeod, R. and Brézin, A. (2011). Clinical manifestations of ocular toxoplasmosis. Ocular Immunology and Inflammation 19, 91102.CrossRefGoogle ScholarPubMed
Delicio, A. M., Milanez, H., Amaral, E., Morais, S. S., Lajos, G. J., Pinto e Silva, J. L. and Cecatti, J. G. (2011). Mother-to-child transmission of human immunodeficiency virus in a ten years period. Reproductive Health 8, 35.CrossRefGoogle Scholar
Demar, M., Hommel, D., Djossou, F., Peneau, C., Boukhari, R., Louvel, D., Bourbigot, A. M., Nasser, V., Ajzenberg, D., Darde, M. L. and Carme, B. (2011). Acute toxoplasmoses in immunocompetent patients hospitalized in an intensive care unit in French Guiana. Clinical Microbiology and Infection doi:10.1111/j.1469-0691.2011.03648.x.Google Scholar
Desmonts, G. and Couvreur, J. (1974). Congenital toxoplasmosis. A prospective study of 378 pregnancies. New England Journal of Medicine 290, 11101116.Google ScholarPubMed
Detanico, L. and Basso, R. M. C. (2006). Toxoplasmose: perfil sorológico de mulheres em idade fértil e gestantes. Revista Brasileira de Análises Clínicas 38, 1518.Google Scholar
Dias, R. A. F., Navarro, I. T., Ruffolo, B. B., Bugni, F. M., de Castro, M. V. and Freire, R. L. (2005). Toxoplasma gondii in fresh pork sausage and seroprevalence in butchers from factories in Londrina, Paraná State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 47, 185189.CrossRefGoogle ScholarPubMed
Dias, R. C. F., Lopes-Mori, F. M. R., Mitsuka-Breganó, R., Dias, R. A. F., Tokano, D. V., Reiche, E. M. V., Freire, R. L. and Navarro, I. T. (2011). Factors associated to infection by Toxoplasma gondii in pregnant women attended in Basic Health Units in the city of Rolândia, Paraná, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 53, 185191.CrossRefGoogle ScholarPubMed
Diniz, B., Regatieri, C., Andrade, R. and Maia, A. (2011). Evaluation of spectral domain and time domain optical coherence tomography findings in toxoplasmic retinochoroiditis. Clinical Ophthalmology 5, 645650.CrossRefGoogle ScholarPubMed
do Amaral, R. P., do Amaral, R. P., de Saidneuy, A. E. K. T., Ribeiro, W. L. and de Andrade, J. (2008). Serological profile of potential solid organ donors in Santa Catarina, Brazil. Transplantation Proceedings 40, 665667.CrossRefGoogle ScholarPubMed
do Amaral, V. and Macruz, R. (1968). Pesquisa de formas encistadas do Toxoplasma gondii em diafragmas de suínos clìnicamente sadios, abatidos em matadouros de São Paulo – Capital. Ciência e Cultura 20, 308.Google Scholar
do Amaral, V. and Macruz, R. (1969). Toxoplasma gondii: isolamento de amostras a partir de diafragmas de suínos clìncamente sadios, abatidos em matadouros de São Paulo – Brasil. Arquivos do Instituto Biológico (São Paulo) 36, 4754.Google Scholar
do Amaral, V., Macruz, R., Rebouças, M. M. and Farinha, F. B. N. (1972). Toxoplasma gondii: tentativa de isolamento do protozoário a partir de músculos diafragmáticos de coelhos clìncamente sadios, abatidos em matadouros de São Paulo-Capital. Ciência e Cultura 24, 388.Google Scholar
do Amaral, V., Santos, S. M., Macruz, R., Fenerich, F. L., Conrado Ribeiro, L. O. and Rebouças, M. M. (1978 b). Toxoplasma gondii: isolamento do protozoário a partir de diafragmas de gatos domésticos, clìnicamente hígidos. O Biológico 44, 211214.Google Scholar
do Amaral, V., Santos, S. M. and Rebouças, M. M. (1975). Estudos preliminares sobre a prevalência de anticorpos antitoxoplasma, por hemaglutinação, em soros de suínos provenientes dos Estados de São Paulo e Rio Grande do Sul, Brasil. O Biológico 41, 105107.Google Scholar
do Amaral, V., Santos, S. M. and Redouças, M. M. (1978 a). Considerações sobre a prevalência de anticorpos antiToxoplasma em soros de suínos provenientes dos estados do Paraná, Santa Catarina, Ceará e Piauí, Brasil. O Biológico 44, 117120.Google Scholar
do Amaral, V., Santos, S. M. and Rebouças, M. M. (1978 c). Sobre a prevalência de anticorpos antitoxoplasma em soros de caprinos e ovinos procedentes, respectivamente, dos Estados da Bahia e Rio Grande do Sul, Brasil. O Biológico 44, 331340.Google Scholar
do Carmo, E. L., Bichara, C. N. C. and Póva, M. M. (2005). Toxoplasmose ocular adquirida pós-natal em Belém – Pará. Revista Paraense de Medicina 19, 2125.Google Scholar
do Carmo, E. L., de Moraes Silva, M. C., Xavier, U. A. M., da Costa, B. O. and Póvoa, M. M. (2004). Inquérito sorológico de toxoplasmose em candidatos a transplante renal no Hospital Ofir Loyola, Belém, Pará, Brasil. Revista Panamericana de Infectologia 6, 1517.Google Scholar
dos Reis, C. R., Lopes, F. M. R., Gonçalves, D. D., Freire, R. L., Garcia, J. L. and Navarro, I. T. (2007). Occurrence of anti-Toxoplasma gondii antibodies in caprines from Pitanga City, Paraná State, Brazil. Brazilian Journal of Veterinary Research and Animal Science 44, 358363.CrossRefGoogle Scholar
dos Santos, C. B. A., de Carvalho, A. C. F. B., Ragozo, A. M. A., Soares, R. M., Amaku, M., Yai, L. E. O., Dubey, J. P. and Gennari, S. M. (2005). First isolation and molecular characterization of Toxoplasma gondii from finishing pigs from São Paulo State, Brazil. Veterinary Parasitology 131, 207211.CrossRefGoogle Scholar
dos Santos, M. C. P., Zaidan, A. E., Costa, A. A. L. and Cardoso, E. S. (1994). Toxoplasmose e gravidez inquérito sorológico em gestantes do Hospital Universitário – Ufal. Revista do Hospital Universitário da Ufal 1, 712.Google Scholar
dos Santos, T. R., Nunes, C. M., Luvizotto, M. C. R., de Moura, A. B., Lopes, W. D. Z., da Costa, A. J. and Bresciani, K. D. S. (2010). Detection of Toxoplasma gondii oocysts in environmental samples from public schools. Veterinary Parasitology 171, 5357.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2002). A review of toxoplasmosis in wild birds. Veterinary Parasitology 106, 121153.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2009 a). Toxoplasmosis in sheep – the last 20 years. Veterinary Parasitology 163, 114.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2009 b). Toxoplasmosis in pigs – the last 20 years. Veterinary Parasitology 164, 89103.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2010 a). Toxoplasmosis of Animals and Humans, 2nd Edn.CRC Press, Boca Raton, FL, USA.Google Scholar
Dubey, J. P. (2010 b). Toxoplasma gondii infections in chickens (Gallus domesticus): Prevalence, clinical disease, diagnosis, and public health significance. Zoonoses and Public Health 57, 6073.CrossRefGoogle ScholarPubMed
Dubey, J. P. and Beattie, C. P. (1988). Toxoplasmosis of Animals and Man. CRC Press, Boca Raton, FL, USA.Google Scholar
Dubey, J. P. and Frenkel, J. K. (1972). Cyst-induced toxoplasmosis in cats. Journal of Protozoology 19, 155177.CrossRefGoogle ScholarPubMed
Dubey, J. P. and Su, C. (2009). Population biology of Toxoplasma gondii: what's out and where did they come from. Memórias do Instituto Oswaldo Cruz 104, 190195.CrossRefGoogle ScholarPubMed
Dubey, J. P., Graham, D. H., Blackston, C. R., Lehmann, T., Gennari, S. M., Ragozo, A. M. A., Nishi, S. M., Shen, S. K., Kwok, O. C. H., Hill, D. E. and Thulliez, P. (2002). Biological and genetic characterisation of Toxoplasma gondii isolates from chickens (Gallus domesticus) from São Paulo, Brazil: unexpected findings. International Journal for Parasitology 32, 99105.CrossRefGoogle Scholar
Dubey, J. P., Graham, D. H., Silva, D. S., Lehmann, T. and Bahia-Oliveira, L. M. G. (2003 a). Toxoplasma gondii isolates of free-ranging chickens from Rio de Janeiro, Brazil: mouse mortality, genotype, and oocyst shedding by cats. Journal of Parasitology 89, 851853.CrossRefGoogle Scholar
Dubey, J. P., Gennari, S. M., Labruna, M. B., Camargo, L. M. A., Vianna, M. C. B., Marcet, P. L. and Lehmann, T. (2006). Characterization of Toxoplasma gondii isolates in free-range chickens from Amazon, Brazil. Journal of Parasitology 92, 3640.CrossRefGoogle ScholarPubMed
Dubey, J. P., Gennari, S. M., Sundar, N., Vianna, M. C. B., Bandini, L. M., Yai, L. E. O., Kwok, O. C. H. and Su, C. (2007 a). Diverse and atypical genotypes identified in Toxoplasma gondii from dogs in São Paulo, Brazil. Journal of Parasitology 93, 6064.CrossRefGoogle ScholarPubMed
Dubey, J. P., Kerber, C. E. and Granstrom, D. E. (1999). Serologic prevalence of Sarcocystis neurona, Toxoplasma gondii, and Neospora caninum in horses in Brazil. Journal of the American Veterinary Medical Association 215, 970972.CrossRefGoogle ScholarPubMed
Dubey, J. P., Murrell, K. D., Fayer, R. and Schad, G. A. (1986). Distribution of Toxoplasma gondii tissue cysts in commercial cuts of pork. Journal of the American Veterinary Medical Association 188, 10351037.Google ScholarPubMed
Dubey, J. P., Navarro, I. T., Graham, D. H., Dahl, E., Freire, R. L., Prudencio, L. B., Sreekumar, C., Vianna, M. C. and Lehmann, T. (2003 b). Characterization of Toxoplasma gondii isolates from free range chickens from Paraná, Brazil. Veterinary Parasitology 117, 229234.CrossRefGoogle ScholarPubMed
Dubey, J. P., Navarro, I. T., Sreekumar, C., Dahl, E., Freire, R. L., Kawabata, H. H., Vianna, M. C. B., Kwok, O. C. H., Shen, S. K., Thulliez, P. and Lehmann, T. (2004). Toxoplasma gondii infections in cats from Paraná, Brazil: seroprevalence, tissue distribution, and biologic and genetic characterization of isolates. Journal of Parasitology 90, 721726.CrossRefGoogle ScholarPubMed
Dubey, J. P., Passos, L. M. F., Rajendran, C., Ferreira, L. R., Gennari, S. M. and Su, C. (2011). Isolation of viable Toxoplasma gondii from guinea fowl (Numida meleagris) and domestic rabbits (Oryctolagus cuniculus) from Brazil. Journal of Parasitology 97, 842845.CrossRefGoogle ScholarPubMed
Dubey, J. P., Rajendran, C., Costa, D. G. C., Ferreira, L. R., Kwok, O. C. H., Qu, D., Su, C., Varvulo, M. F. V., Alves, L. C., Mota, R. A. and Silva, J. C. R. (2010). New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. Journal of Parasitology 96, 709712.CrossRefGoogle Scholar
Dubey, J. P., Sundar, N., Gennari, S. M., Minervino, A. H. H., Farias, N. A. R., Ruas, J. L., dos Santos, T. R. B., Cavalcante, G. T., Kwok, O. C. H. and Su, C. (2007 b). Biologic and genetic comparison of Toxoplasma gondii isolates in free-range chickens from the northern Pará state and the southern state Rio Grande do Sul, Brazil revealed highly diverse and distinct parasite populations. Veterinary Parasitology 143, 182188.CrossRefGoogle Scholar
Dubey, J. P., Velmurugan, G. V., Chockalingam, A., Pena, H. F. J., de Oliveira, L. N., Leifer, C. A., Gennari, S. M., Bahia-Oliveira, L. M. G. and Su, C. (2008). Genetic diversity of Toxoplasma gondii isolates from chickens from Brazil. Veterinary Parasitology 157, 299305.CrossRefGoogle ScholarPubMed
Dunn, D., Wallon, M., Peyron, F., Petersen, E., Peckham, C. and Gilbert, R. (1999). Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counseling. Lancet 353, 18291833.CrossRefGoogle Scholar
Eckert, G. U., Melamed, J. and Menegaz, B. (2007). Optic nerve changes in ocular toxoplasmosis. Eye 21, 746751.CrossRefGoogle ScholarPubMed
Elbez-Rubinstein, A., Ajzenberg, D., Dardé, M. L., Cohen, R., Dumètre, A., Yera, H., Gondon, E., Janaud, J. C. and Thulliez, P. (2009). Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. Journal of Infectious Diseases 199, 280285.CrossRefGoogle ScholarPubMed
Epiphanio, S., Catão-Dias, J. L. and Guimarães, M. A. B. V. (1999). Toxoplasmosis in emperor tamarin (Saguinus imperator): case report. Brazilian Journal of Veterinary Research and Animal Science 36, 2.CrossRefGoogle Scholar
Epiphanio, S., Guimarães, M. A. B. V., Fedullo, D. L., Correa, S. H. R. and Catão-Dias, J. L. (2000). Toxoplasmosis in golden-headed lion tamarins (Leontopithecus chrysomelas) and emperor marmosets (Saguinus imperator) in captivity. Journal of Zoo and Wildlife Medicine 31, 231235.Google ScholarPubMed
Epiphanio, S., , L. R. M., Teixeira, R. H. F. and Catão-Dias, J. L. (2001). Toxoplasmosis in a wild-caught black lion tamarin (Leontopithecus chrysopygus). Veterinary Record 149, 627628.CrossRefGoogle Scholar
Epiphanio, S., Sinhorini, I. L. and Catão-Dias, J. L. (2003). Pathology of toxoplasmosis in captive New World primates. Journal of Comparative Pathology. 129, 196204.CrossRefGoogle ScholarPubMed
Faria, E. B., Gennari, S. M., Pena, H. F. J., Athayde, A. C. R., Silva, M. L. C. R., and Azevedo, S. S. (2007). Prevalence of anti-Toxoplasma gondii and anti-Neospora caninum antibodies in goats slaughtered in the public slaughterhouse of Patos city, Paraíba State, Northeast region of Brazil. Veterinary Parasitology 149, 126129.CrossRefGoogle ScholarPubMed
Feldman, H. A. (1965). A nationwide serum survey of United States military recruits, 1962. VI. Toxoplasma antibodies. American Journal of Epidemiology 81, 385391.CrossRefGoogle ScholarPubMed
Fernandes, E. F. T. S., Fernandes, M. F. T. S., Kim, P. C. P., de Albuquerque, P. P. F., Neto, O. L. S., Santos, A. S., de Moraes, É. P. B. X., de Morais, E. G. F. and Mota, R. A. (2012). Study of Toxoplasma gondii in slaughtered swine in the state of Pernambuco, Brazil. Journal of Parasitology (in the Press).Google Scholar
Fernandes, M. A., Batista, G. I., Carlos, J. C. S., Gomes, I. M., de Azevedo, K. M. L., Setubal, S., de Oliveira, S. A., Velarde, L. G. C. and Cardoso, C. A. A. (2012). Toxoplasma gondii antibody profile in HIV-1-infected and uninfected pregnant women and the impact on congenital toxoplasmosis diagnosis in Rio de Janeiro, Brazil. Brazilian Journal of Infectious Diseases 16, 170174.CrossRefGoogle ScholarPubMed
Fernandes, R. C. S. C., Vasconcellos, V. P., de Araújo, L. C. and Medina-Acosta, E. (2009). Vertical transmission of HIV and Toxoplasma by reactivation in a chronically infected woman. Brazilian Journal of Infectious Diseases 13, 7071.CrossRefGoogle Scholar
Ferraroni, J. J., Reed, S. G. and Speer, C. A. (1980). Prevalence of Toxoplasma antibodies in humans and various animals in the Amazon. Proceedings of the Helminthological Society of Washington 47, 148150.Google Scholar
Ferreira, A. M., Vitor, R. W. A., Carneiro, A. C. A. V., Brandão, G. P. and Melo, M. N. (2004). Genetic variability of Brazilian Toxoplasma gondii strains detected by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and simple sequence repeat anchored-PCR (SSR-PCR). Infection, Genetics and Evolution 4, 131142.CrossRefGoogle ScholarPubMed
Ferreira, A. M., Vitor, R. W. A., Gazzinelli, R. T. and Melo, M. N. (2006). Genetic analysis of natural recombinant Brazilian Toxoplasma gondii strains by multilocus PCR-RFLP. Infection, Genetics and Evolution 6, 2231.CrossRefGoogle ScholarPubMed
Ferreira, I. M. R., Vidal, J. E., de Mattos, C. C. B., de Mattos, L. C., Qu, D., Su, C. and Pereira-Chioccola, V. L. (2011). Toxoplasma gondii isolates: multilocus RFLP-PCR genotyping from human patients in São Paulo State, Brazil identified distinct genotypes. Experimental Parasitology 129, 190195.CrossRefGoogle Scholar
Ferreira, M., Bicheri, M. C. M., Nunes, M. B. and Ferreira, C. C. M. (2007). Diagnóstico laboratorial de infecção por Toxoplasma gondii na gestação. Revista Brasileira de Análiaes Clínicas 39, 3738.Google Scholar
Ferreira, M. U., Hiramoto, R. M., Aureliano, D. P., da Silva-Nunes, M., da Silva, N. S., Malafronte, R. S. and Muniz, P. T. (2009). A community-based survey of human toxoplasmosis in rural Amazonia: seroprevalence, seroconversion rate, and associated risk factors. American Journal of Tropical Medicine and Hygiene 81, 171176.CrossRefGoogle ScholarPubMed
Fialho, C. G. and de Araujo, F. A. P. (2003). Detecção de anticorpos para Toxoplasma gondii em soro de suínos criados e abatidos em frigoríficos da região grande Porto Alegre-RS, Brasil. Ciência Rural, Santa Maria 33, 893897.CrossRefGoogle Scholar
Fialho, C. G., Teixeira, M. C. and de Araujo, F. A. P. (2009). Toxoplasmose animal no Brasil. Acta Scientiae Veterinariae 37, 123.CrossRefGoogle Scholar
Figliuolo, L. P. C., Kasai, N., Ragozo, A. M. A., de Paula, V. S. O., Dias, R. A., Souza, S. L. P. and Gennari, S. M. (2004 a). Prevalence of anti-Toxoplasma gondii and anti-Neospora caninum antibodies in ovine from São Paulo State, Brazil. Veterinary Parasitology 123, 161166.CrossRefGoogle ScholarPubMed
Figliuolo, L. P. C., Rodrigues, A. A. R., Viana, R. B., Aguiar, D. M., Kasai, N. and Gennari, S. M. (2004 b). Prevalence of anti-Toxoplasma gondii and anti-Neospora caninum antibodies in goat from São Paulo State, Brazil. Small Ruminant Research 55, 2932.CrossRefGoogle Scholar
Figueiredo, J. F., Silva, D. A. O., Cabral, D. D. and Mineo, J. R. (2001). Seroprevalence of Toxoplasma gondii infection in goats by the indirect haemagglutination, immunofluorescence and immunoenzymatic tests in the region of Uberlândia, Brazil. Memórias do Instituto Oswaldo Cruz 96, 687692.CrossRefGoogle ScholarPubMed
Figueiró-Filho, E. A., Lopes, A. H. A., Senefonte, F. R. A., de Souza Júnior, V. G., Botelho, C. A., Figueiredo, M. S. and Duarte, G. (2005). Toxoplasmose aguda: estudo da freqüência, taxa de transmissão vertical e relação entre os testes diagnósticos materno-fetais em gestantes em estado da Região Centro-Oeste do Brasil. Revista Brasileira de Ginecologia e Obstetrícia 27, 442449.Google Scholar
Francisco, F. M., de Souza, S. L. P., Gennari, S. M., Pinheiro, S. R., Muradian, V. and Soares, R. M. (2006). Seroprevalence of toxoplasmosis in a low-income community in the São Paulo Municipality, SP, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 48, 167170.CrossRefGoogle Scholar
Frazão-Teixeira, E., de Oliveira, F. C. R., Pelissari-Sant’ Ana, V. and Lopes, C. W. G. (2006). Toxoplasma gondii em encéfalos de suínos comercializados no município de Campos dos Goytacazes, Estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária 15, 3336.Google Scholar
Frazão-Teixeira, E. and de Oliveira, F. C. R. (2011). Anti-Toxoplasma gondii antibodies in cattle and pigs in a highly endemic area for human toxoplasmosis in Brazil. Journal of Parasitology 97, 4447.CrossRefGoogle Scholar
Frazão-Teixeira, E., Sundar, N., Dubey, J. P., Grigg, M. E. and de Oliveira, F. C. R. (2011). Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains. Veterinary Parasitology 175, 3339.CrossRefGoogle ScholarPubMed
Freire, R. L., Giraldi, N., Vidotto, O. and Navarro, I. T. (1995). Levantamento soroepidemiológico da toxoplasmose em ovinos na região de Londrina, Paraná. Arquivos Brasileiros de Medicina Veterinária e Zootecnia 47, 609612.Google Scholar
Freitas, J. A., Oliveira, J. P., Ramos, O. S. and Ishizuka, M. M. (2009). Frequência de anticorpos anti-Toxoplasma gondii em suínos abatidos sem inspeção em Belém. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61, 12301232.CrossRefGoogle Scholar
Galisteu, K. J., Mattos, C. B., Lelis, A. G. L., de Oliveira, M. P., Spejorim, L. F., Jordão, P., Zago, A. P., Cury, P. M., de Mattos, L. C., Rossit, A. R. B., Cavasini, C. E. and Machado, R. L. D. (2007). Prevalência e fatores de risco associados à toxoplasmose em grávidas e suas crianças no Noroeste Paulista, Brasil. Revista Panamericana de Infectologia 9, 2429.Google Scholar
Garcia, J. L., Navarro, I. T., Ogawa, L. and de Oliveira, R. C. (1999 a). Soroprevalência do Toxoplasma gondii, em suínos, bovinos, ovinos e eqüinos, e sua correlação com humanos, felinos e caninos, oriundos de propriedades rurais do norte do Paraná-Brasil. Ciência Rural.Santa Maria 29, 9197.CrossRefGoogle Scholar
Garcia, J. L., Navarro, I. T., Ogawa, L. and de Oliveira, R. C. (1999 b). Soroepidemiologia da toxoplasmose em gatos e cães de propriedades rurais do município de Jaguapitã, Estado do Paraná, Brasil. Ciência Rural 29, 99104.CrossRefGoogle Scholar
Garcia, J. L., Navarro, I. T., Ogawa, L., de Oliveira, R. C. and Kobilka, E. (1999 c). Soroprevalência, epidemiologia e avaliação ocular da toxoplasmose humana na zona rural de Jaguapitã (Paraná), Brasil. Revista Panamericana de Salud Pública 6, 157163.CrossRefGoogle Scholar
Garcia, J. L., Navarro, I. T., Ogawa, L. and Marana, E. R. M. (2000). Soroprevalência do Toxoplasma gondii em galinhas (Gallus gallus domesticus) de criações domésticas, oriundas de propriedades rurais do Norte do Paraná, Brasil. Ciência Rural, Santa Maria 30, 123127.CrossRefGoogle Scholar
Garcia, G., Sotomaior, C., do Nascimento, A. J., Navarro, I. R. and Soccol, V. T. (2012). Toxoplasma gondii in goats from Curitiba, Paraná, Brazil: risks factors and epidemiology. Revista Brasileira de Parasitologia Veterinária 21, 4247.CrossRefGoogle ScholarPubMed
Garweg, J. G., Ventura, A. C. S., Halberstadt, M., Silveira, C., Muccioli, C., Belfort, R. Jr. and Jacquier, P. (2005). Specific antibody levels in the aqueous humor and serum of two distinct populations of patients with ocular toxoplasmosis. International Journal of Medical Microbiology 295, 287295.CrossRefGoogle ScholarPubMed
Gattás, V. L., Nunes, E. M., Soares, A. L. B., Pires, M. A., Pinto, P. L. S. and de Andrade, H. F. (2000). Acute toxoplasmose outbreak at campus of the University of Sao Paulo related to food or water oocyst contamination. International Conference on Emerging Infectious Diseases, Atlanta, Georgia 2000, 135.Google Scholar
Gazêta, G. S., Dutra, A. E. A., Norberg, A. N., Serra-Freire, N. M., Souza, W. J. S., Amorim, M. and Lopes, L. M. S. (1997). Freqüência de anticorpos anti-Toxoplasma gondii em soros de eqüinos no estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária 6, 8791.Google Scholar
Gilbert, R., Dunn, D., Wallon, M., Hayde, M., Prusa, A., Lebech, M., Kortbeek, T., Peyron, F., Pollak, A. and Petersen, E. (2001). Ecological comparison of the risks of mother-to-child transmission and clinical manifestations of congenital toxoplasmosis according to prenatal treatment protocol. Epidemiology and Infection 127, 113120.CrossRefGoogle ScholarPubMed
Gilbert, R. E., Freeman, K., Lago, E. G., Bahia-Oliveira, L. M. G., Tan, H. K., Wallon, M., Buffolano, W., Stanford, M. R. and Petersen, E. (2008). Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Neglected Tropical Diseases 2, e277.CrossRefGoogle ScholarPubMed
Giraldi, N., Vidotto, O., Navarro, I. T., Garcia, J. L., Ogawa, L. and Kobylka, E. (2002). Toxoplasma antibody and stool parasites in public school children, Rolândia, Paraná, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 35, 215219.CrossRefGoogle ScholarPubMed
Glasner, P. D., Silveira, C., Camargo, M., Kim, M., Nussenblatt, R. B., Belfort, R. Jr. and Kaslow, R. A. (1992 a). Low frequency of congenital Toxoplasma gondii (TG) infection in the Erexim Region of Rio Grande do Sul, Brazil. Ophthalmology 99 (Suppl.), 150.Google Scholar
Glasner, P. D., Silveira, C., Kruszon-Moran, D., Martins, M. C., Burnier, M., Silveira, S., Camargo, M. E., Nussenblatt, R. B., Kaslow, R. A. and Belfort, R. Jr. (1992 b). An unusually high prevalence of ocular toxoplasmosis in southern Brazil. American Journal of Ophthalmology 114, 136144.CrossRefGoogle ScholarPubMed
Gomes, U. A., Teruel, J. R., Ferrioli Filho, F. and Nogueira, J. L. (1975). Estudo comparativo das frequências de infecção por Toxoplasma gondii nas zonas urbana e rural. Revista do Instituto de Medicina Tropical de São Paulo 17, 355360.Google ScholarPubMed
Gonçalves, D. D., Teles, P. S., dos Reis, C. R., Lopes, F. M. R., Freire, R. L., Navarro, I. T., Alves, L. A., Muller, E. E. and de Freitas, J. C. (2006). Seroepidemiology and occupational and environmental variables for leptospirosis, brucellosis and toxoplasmosis in slaughterhouse workers in the Paraná State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 48, 135140.CrossRefGoogle ScholarPubMed
Gondim, L. F. P., Barbosa, H. V., Ribeiro, C. H. A. and Saeki, H. (1999). Serological survey of antibodies to Toxoplasma gondii in goats, sheep, cattle, and water buffaloes in Bahia State, Brazil. Veterinary Parasitology 82, 273276.CrossRefGoogle Scholar
Gouveia, E. B., Yamamoto, J. H., Abdalla, M., Hirata, C. E., Kubo, P. and Olivalves, E. (2004). Causas das uveítes em serviço terciário em São Paulo, Brasil. Arquivos Brasileiros de Oftalmologia 67, 139145.CrossRefGoogle Scholar
Grünspan, E. D., Moreira, W. S., Edelweiss, M. I. A., Ulon, S. N. and Daudt, H. M. L. (1995). Imunoglobulinas antitoxoplásmicas e retinocoroidite em suínos. Ciência Rural. Santa Maria 25, 261264.CrossRefGoogle Scholar
Guerina, N. G., Hsu, H. W., Meissner, H. C., Maguire, J. H., Lynfield, R., Stechenberg, B., Abroms, I., Pasternack, M. S., Hoff, R., Eaton, R. B., Grady, G. F., Cheeseman, S. H., McIntosh, K., Medearis, D. N., Robb, R. and Weiblen, B. J. (1994). Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. New England Journal of Medicine 330, 18581863.CrossRefGoogle ScholarPubMed
Guimarães, A. C., Kawarabayashi, M., Borges, M. M., Tolezano, J. E. and Andrade, H. F. (1993). Regional variation in toxoplasmosis seronegativity in the São Paulo metropolitan region. Revista do Instituto de Medicina Tropical de São Paulo 35, 479483.CrossRefGoogle ScholarPubMed
Guimarães, A. M., Ribeiro, M. F. B., Lima, J. D. and de Almeida, T. M. B. (1992). Freqüência de anticorpos anti-Toxoplasma gondii em suínos da raça Piau. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 44, 6971.Google Scholar
Guimarães, F. N. (1943). Toxoplasmose humana. Meningoencefalomielite toxoplásmica: ocorrência em adulto e em recém-nascido. Memórias do Instituto Oswaldo Cruz 38, 257320.CrossRefGoogle Scholar
Guimarães, F. N. and Meyer, H. (1942). Cultivo de Toxoplasma Nicolle & Manceaux, 1909, em culturas de tecidos. Revista Brasileira de Biologia 2, 123129.Google Scholar
Haddad, M. A. O., Sei, M., Sampaio, M. W. and Kara-José, N. (2007). Causes of visual impairment in children: a study of 3,210 cases. Journal of Pediatric Ophthalmology & Strabismus 44, 232240.Google Scholar
Hayashi, S., Kim, M. K. and Belfort, R. Jr. (1997). White-centered retinal hemorrhages in ocular toxoplasmosis. Retina 17, 351352.CrossRefGoogle ScholarPubMed
Heukelbach, J., Meyer-Cirkel, V., Moura, R. C. S., Gomide, M., Queiroz, J. A. N., Saweljew, P. and Liesenfeld, O. (2007). Waterborne toxoplasmosis, northeastern Brazil. Emerging Infectious Diseases 13, 287289.CrossRefGoogle ScholarPubMed
Higa, L. T., Araújo, S. M., Tsuneto, L., Castilho-Pelloso, M., Garcia, J. L., Santana, R. G. and Falavigna-Guilherme, A. L. (2010). A prospective study of Toxoplasma-positive pregnant women in southern Brazil: a health alert. Transactions of the Royal Society of Tropical Medicine and Hygiene 104, 400405.CrossRefGoogle Scholar
Holland, G. N. (2003). Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. American Journal of Ophthalmology 136, 973988.CrossRefGoogle ScholarPubMed
Holland, G. N. (2009). Ocular toxoplasmosis: the influence of patient age. Memórias do Instituto Oswaldo Cruz 104, 351357.CrossRefGoogle ScholarPubMed
Holland, G. N., Muccioli, C., Silveira, C., Weisz, J. M., Belfort, R. Jr. and O'Connor, G. R. (1999). Intraocular inflammatory reactions without focal necrotizing retinochoroiditis in patients with acquired systemic toxoplasmosis. American Journal of Ophthalmology 128, 413420.CrossRefGoogle ScholarPubMed
Howe, D. K. and Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. Journal of Infectious Diseases 172, 15611566.CrossRefGoogle ScholarPubMed
Inagaki, A. D. M., de Oliveira, L. A. R., de Oliveira, M. F. B., Santos, R. C. S., Araújo, R. M., Alves, J. A. B., Pinheiro, K. S., Gurgel, R. Q. and Mussi-Pinhata, M. M. (2009). Soroprevalência de anticorpos para toxoplasmose, rubéola, citomegalovírus, sífilis e HIV em gestantes sergipanas. Revista da Sociedade Brasileira de Medicina Tropical 42, 532536.CrossRefGoogle Scholar
Ishizuka, M. M. (1978). Estudo comparativo entre as provas de Sabin-Feldman e de imunofluorescência indireta para a determinação de anticorpos anti-Toxoplasma em soros de suínos. Revista da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo 15, 4549.CrossRefGoogle Scholar
Ishizuka, M. M., D'Angelino, J. L. and Souza, J. M. P. (1986). Toxoplasmose suína. 2. Estudo comparativo das provas de imunofluorescência indireta e hemaglutinação, para a avaliação de anticorpos anti-Toxoplasma em soros suínos. Boletin de la Officina Sanitaria Panamericana 100, 524530.Google Scholar
Ishizuka, M. M., Miguel, O. and Brogliato, D. F. (1975). Avaliação da prevalência de anticorpos anti-Toxoplasma em eqüinos PSI clinicamente normais. Revista da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo 12, 289292.CrossRefGoogle Scholar
Jamra, L. M. F. and Guimarães, E. C. (1981). Conversão sorológica para toxoplasmose em crianças de um centro de saúde de São Paulo. Revista do Instituto de Medicina Tropical de São Paulo 23, 133137.Google Scholar
Jamra, L. F., Deane, M. P. and Guimarães, E. C. (1969). On the isolation of Toxoplasma gondii from human food of animal origin. Partial results in the city of São Paulo (Brazil). Revista do Instituto de Medicina Tropical de São Paulo 11, 169176.Google ScholarPubMed
Jamra, L. F., Deane, M. P., Mion, D., and Guimarães, E. C. (1971). Isolation of Toxoplasma gondii from human tonsils. Revista Brasileira de Pesquisas Médicas e Biológicas. 4, 97102.Google Scholar
Jamra, L. M. F., Santos, O. C. and Guimarães, E. C. (1979). Presença de anticorpos anti-Toxoplasma em gestantes e recém-nascidos de um centro de saúde de São Paulo. Revista Brasileira de Pesquisas Médicas e Biológicas 12, 279285.Google Scholar
Jones, J. L. and Dubey, J. P. (2010). Waterborne toxoplasmosis – recent developments. Experimental Parasitology 124, 1025.CrossRefGoogle ScholarPubMed
Jones, J. L. and Holland, G. N. (2010). Short report: annual burden of ocular toxoplasmosis in the United States. American Journal of Tropical Medicine and Hygiene 82, 464465.CrossRefGoogle Scholar
Jones, J. L., Muccioli, C., Belfort, R. Jr., Holland, G. N., Roberts, J. M. and Silveira, C. (2006). Recently acquired Toxoplasma gondii infection, Brazil. Emerging Infectious Diseases 12, 582587.CrossRefGoogle ScholarPubMed
Jorge, E. C., de Moraes Silva, M. R. B., Nakamoto, W. and Jorge, E. N. (2003). Avaliação do sistema sangüíneo Duffy como fator de risco para a toxoplasmose ocular. Revista Brasileira de Oftalmologia 62, 598611.Google Scholar
Kara José, N., de Carvalho, K. M. M., Pereira, V. L., Venturini, N. H. B., Gasparetto, M. E. F. R. and Gushiken, M. T. (1988). Estudo retrospectivo dos primeiros 140 casos atendidos na Clínica de Visão Sub-normal do Hospital de Clínicas da UNICAMP. Arquivos Brasileiros de Oftalmologia 51, 6569.Google Scholar
Kawasaki, M. L., de Carvalho, P. N. and Lucarevschi, B. R. (2006). Atenção à toxoplasmose durante a gestação em população carente do interior do Estado de São Paulo. Pediatria 28, 242250.Google Scholar
Khan, A., Jordan, C., Muccioli, C., Vallochi, A. L., Rizzo, L. V., Belfort, R., Vitor, R. W. A., Silveira, C. and Sibley, L. D. (2006). Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerging Infectious Diseases 12, 942949.CrossRefGoogle ScholarPubMed
Kodjikian, L., Hoigne, I., Adam, O., Jacquier, P., Aebi-Ochsner, C., Aebi, C. and Garweg, J. G. (2004). Vertical transmission of toxoplasmosis from a chronically infected immunocompetent woman. Pediatric Infectious Disease Journal 23, 272274.CrossRefGoogle ScholarPubMed
Lago, E. G., Conrado, G. S., Piccoli, C. S., Carvalho, R. L. and Bender, A. L. (2009 a). Toxoplasma gondii antibody profile in HIV-infected pregnant women and the risk of congenital toxoplasmosis. European Journal of Clinical Microbiology and Infectious Diseases 28, 345351.CrossRefGoogle ScholarPubMed
Lago, E. G., de Carvalho, R. L., Jungblut, R., da Silva, V. B. and Fiori, R. M. (2009 b). Screening for Toxoplasma gondii antibodies in 2,513 consecutive parturient women and evaluation of newborn infants at risk for congenital toxoplasmosis. Scientia Medica 19, 2734.Google Scholar
Lago, E. G., Neto, E. C., Melamed, J., Rucks, A. P., Presotto, C., Coelho, J. C., Parise, C., Vargas, P. R., Goldbeck, A. S. and Fiori, R. M. (2007). Congenital toxoplasmosis: late pregnancy infections detected by neonatal screening and maternal serological testing at delivery. Paediatric and Perinatal Epidemiology 21, 525531.CrossRefGoogle ScholarPubMed
Lamas da Silva, J. M. L. (1959). Sôbre um caso de toxoplasmose espontânea em suínos. Arquivos da Escola Superior de Veterinária 12, 425428.Google Scholar
Lamb, G. A. and Feldman, H. A. (1968). A nationwide serum survey of Brazilian military recruits, 1964.III. Toxoplasma dye test antibodies. American Journal of Epidemiology 87, 323328.CrossRefGoogle ScholarPubMed
Langoni, H., Greca, H., Guimarães, F. F., Ullmann, L. S., Gaio, F. C., Uehara, R. S., Rosa, E. P., Amorim, R. M. and da Silva, R. C. (2011). Serological profile of Toxoplasma gondii and Neospora caninum infection in commercial sheep from São Paulo State, Brazil. Veterinary Parasitology 177, 5054.CrossRefGoogle ScholarPubMed
Larangeira, N. L., Ishizuka, M. M. and Hyakutake, S. (1985). Prevalência da toxoplasmose eqüina avaliada pela técnia de imunofluorescência indireta, Mato Grosso do Sul, Brasil. Boletin de la Officina Sanitaria Panamericana 99, 158162.Google Scholar
Larsson, C. E., Jamra, L. M. F., Guimarães, E. C., Pattoli, D. B. G. and da Silva, H. L. L. (1980). Prevalência de toxoplasmose ovina determinada pela reação de Sabin-Feldman em animais de Uruguaiana, RS, Brasil. Revista de Saúde Pública, São Paulo 14, 582588.CrossRefGoogle Scholar
Leal, F. E., Cavazzana, C. L., de Andrade, H. F., Galisteo, A. J., de Mendonça, J. S. and Kallas, E. G. (2007). Toxoplasma gondii pneumonia in immunocompetent subjects: case report and review. Clinical Infectious Diseases 44, e62e66.CrossRefGoogle ScholarPubMed
Leão, P. R. D., Meirelles, J. and de Medeiros, S. F. (2004). Toxoplasmose: soroprevalência em puérperas atendidas pelo Sistema Único de Saúde. Revista Brasileira de Ginecologia e Obstetrícia 26, 627632.CrossRefGoogle Scholar
Lebech, M., Joynson, D. H., Seitz, H. M., Thulliez, P., Gilbert, R. E., Dutton, G. N., Ovlisen, B. and Petersen, E. (1996). Classification system and case definitions of Toxoplasma gondii infection in immunocompetent pregnant women and their congenitally infected offspring. European Research Network on Congenital Toxoplasmosis. European Journal of Clinical Microbiology Infectious Diseases 15, 799805.CrossRefGoogle ScholarPubMed
Lebech, M., Andersen, O., Christensen, N. C., Hertel, J., Nielsen, H. E., Peitersen, B., Rechnitzer, C., Larsen, S. O., Norgaard-Pedersen, B., Petersen, E. and the Danish Congenital Toxoplasmosis Study Group. (1999). Feasibility of neonatal screening for Toxoplasma infection in the absence of prenatal treatment. Lancet 353, 18341837.CrossRefGoogle ScholarPubMed
Lehmann, T., Marcet, P. L., Graham, D. H., Dahl, E. R. and Dubey, J. P. (2006). Globalization and the population structure of Toxoplasma gondii. Proceedings of the National Academy of Sciences, USA 103, 1142311428.CrossRefGoogle ScholarPubMed
Lima, J. N., Felicio, P. S., Franco, P. M., Lara, M. C. C. S., Cunha, E. M. S., Quaglieri, D., Gomes, L. O. and Villabobos, E. M. C. (2007). Ocorrência de anticorpos anti-Toxoplasma gondii (Nicolle & Manceaux, 1908) em suínos abatidos em matadouros no estado de São Paulo, SP, Brasil. O Biológico 67, (Suppl. 1), 25.Google Scholar
Lindsay, D. S. and Dubey, J. P. (2011). Toxoplasma gondii: the changing paradigm of congenital toxoplasmosis. Parasitology 138, 18291831.CrossRefGoogle ScholarPubMed
Lopes, F. M. R., Gonçalves, D. D., dos Reis, C. R., Breganó, R. M., Freire, R. L., de Freitas, J. C. and Navarro, I. T. (2008). Presence of domesticated cats and visual impairment associated to Toxoplasma gondii serum positive children at an elementary school in Jataizinho, State of Paraná, Brazil. Revista Brasileira de Parasitologia Veterinária 17, 1215.CrossRefGoogle ScholarPubMed
Lopes, F. M. R., Mitsuka-Breganó, R., Costa, I. C., Carletti, R. T., Reis, C. R., Gonçalves, D. D., Navarro, I. T. and Freire, R. L. (2005). Ocorrência de anticorpos IgG anti-Toxoplasma gondii em alunos do ensino médio do Município de São Jerônimo da Serra – PR, Brasil. Revista Brasileira de Análises Clínicas 37, 107109.Google Scholar
Lopes, F. M. R., Mitsuka-Breganó, R., Gonçalves, D. D., Freire, R. L., Karigyo, C. J. T., Wedy, G. F., Matsuo, T., Reiche, E. M. V., Morimoto, H. K., Capobiango, J. D., Inoue, I. T., Garcia, J. L. and Navarro, I. T. (2009). Factors associated with seropositivity for anti-Toxoplasma gondii antibodies in pregnant women of Londrina, Paraná, Brazil. Memórias do Instituto Oswaldo Cruz 104, 378382.CrossRefGoogle ScholarPubMed
Lopes, W. D. Z., dos Santos, T. R., da Silva, R. S., Rossanese, W. M., de Souza, F. A., Rodrigues, J. F., de Mendonça, R. P., Soares, V. E. and da Costa, A. J. (2010). Seroprevalence of and risk factors for Toxoplasma gondii in sheep raised in the Jaboticabal microregion, São Paulo State, Brazil. Research in Veterinary Science 88, 104106.CrossRefGoogle ScholarPubMed
Lucas, S. R. R., Hagiwara, M. K., Loureiro, V. D. S., Ikesaki, J. Y. H. and Birgel, E. H. (1999). Toxoplasma gondii infection in Brazilian domestic outpatient cats. Revista do Instituto de Medicina Tropical de São Paulo 41, 221224.CrossRefGoogle ScholarPubMed
Luft, B. J. and Remington, J. S. (1992). Toxoplasmic encephalitis in AIDS. Clinical Infectious Diseases 15, 211222.CrossRefGoogle ScholarPubMed
Lynch, M. I., de Moraes, L. F. L., Malagueño, E., Ferreira, S., Cordeiro, F. and Oréfice, F. (2008). Características clínicas de 64 indivíduos portadores de uveítis posterior activa presumiblemente toxoplásmica en Pernambuco. Arquivos Brasileiros de Oftalmologia 71, 4348.CrossRefGoogle ScholarPubMed
Lynch, M. I., Malagueño, E., Lynch, L. F., Ferreira, S., Stheling, R. and Oréfice, F. (2009). Anti-Toxoplasma gondii secretory IgA in tears of patients with ocular toxoplasmosis: immunodiagnostic validation by ELISA. Memórias do Instituto Oswaldo Cruz 104, 818822.CrossRefGoogle ScholarPubMed
Machado, T. M. M. and Lima, J. D. (1987). Freqüência de anticorpos anti-Toxoplasma gondii em caprinos criados sob diferentes formas de exploração no Estado de Minas Gerais. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 39, 255264.Google Scholar
Maciel, K. P. and de Araujo, F. A. P. (2004). Inquerito sorológico para detecção de anticorpos de Toxoplasma gondii em caprinos (Capra hircus) criados nos municípios de Gravataí e Viamão. região de Grande Porto Alegre, Rio Grande do Sul, Brasil. Revista de Ciências Agroveterinárias 3, 121125.Google Scholar
Macruz, R., Lenci, O., Ishizuka, M. M., Miguel, O. and da Cunha, R. A. F. (1975). Toxoplasmose em equinos PSI: estudo sorológico. Revista da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo 12, 277282.CrossRefGoogle Scholar
Magaldi, C., Elkis, H., Pattoli, D., de Queiróz, J. C., Coscina, A. L. and Ferreira, J. M. (1967). Surto de toxoplasmose em um seminário de Bragança Paulista (Estado de São Paulo). Aspectos clínicos, sorológicos e epidemiológicos. Revista de Saúde Pública, São Paulo 1, 141171.CrossRefGoogle Scholar
Magaldi, C., Elkis, H., Pattoli, D. and Coscina, A. L. (1969). Epidemic of toxoplasmosis at a university in São-José-dos-Campos, S.P.,Brazil. 1. Clinical and serologic data. Revista Latinoamericana de Microbiologia y Parasitologia 11, 513.Google Scholar
Mainardi, R. S., Modolo, J. R., Stachissini, A. V. M., Padovani, C. R. and Langoni, H. (2003). Soroprevalência de Toxoplasma gondii em rebanhos caprinos no Estado de São Paulo. Revista da Sociedade Brasileira de Medicina Tropical 36, 759761.CrossRefGoogle ScholarPubMed
Maluenda, A. C. H., Casagrande, R. A., Nemer, V. C., Kanamura, C. T., Kluyber, D., Teixeira, R. H. F. and Matushima, E. R. (2009). Infecção aguda fatal por Toxoplasma gondii em macaco-barrigudo (Lagothrix lagotricha) – relato de caso. Clínica Veterinária 81, 100104.Google Scholar
Mandai, O. N., Lopes, F. M. R. and Mitsuka-Breganó, R. (2007). Prevalência de anticorpos igG e igM anti-Toxoplasma gondii em gestantes atendidas nas unidades básicas de saúde do município de Londrina – Paraná, no período de 2003 e 2004. Revista Brasileira de Análises Clínica 39, 247249.Google Scholar
Marana, E. R. M., Navarro, I. T., Vidotto, O., Freire, R. L. and Lott, R. (1994). Ocorrência de anticorpos anti-Toxoplasma gondii em bovinos de corte, abatidos em matadouros do norte do Paraná – Brasil. Semina: Ciências Agrárias, Londrina 15, 3840.Google Scholar
Marana, E. R. M., Ventrurini, A. C. H., Freire, R. L., Vidotto, O. and Navarro, I. T. (1995). Ocorrência de anticorpos anti-Toxoplasma gondii em rebanhos de bovinos de Leite do Norte do Paraná – Brasil. Semina: Ciências Agrárias, Londrina 16, 4042.Google Scholar
Martins, J. R., Hancock, R., Corrêa, B. L. and Ceresér, V. H. (1998). Ocorrência de anticorpos contra Toxoplasma gondii em ovinos no muncípio de Livramento, RS: prevalência e implicações epidemiológicas. Pesquisa Agropecuária Gaúcha 4, 2729.Google Scholar
Matos, K. T. F., Santos, M. C. M. and Muccioli, C. (1999). Manifestações oculares do paciente infectado pelo HIV atendido no Departamento de Oftalmologia da Universidade Federal de São Paulo. Revista da Associação Médica Brasileira 45, 323326.CrossRefGoogle ScholarPubMed
Matos, M. P. C., Sobestiansky, J., Gambarini, M. L. and Caiado, K. L. (1995). Anticorpos para Toxoplasma gondii em soros de matrizes suínas de granjas que abastecem o mercado consumidor de Goiânia. A Hora Veterinária 19, 911.Google Scholar
Mattos, C. C. B., Meira, C. S., Ferreira, A. I. C., Frederico, F. B., Hiramoto, R. M., Almeida, G. C., Mattos, L. C. and Pereira-Chioccola, V. L. (2011). Contribution of laboratory methods in diagnosing clinically suspected ocular toxoplasmosis in Brazilian patients. Diagnostic Microbiology and Infectious Disease 70, 362366.CrossRefGoogle ScholarPubMed
McLeod, R., Boyer, K., Karrison, T., Kasza, K., Swisher, C., Roizen, N., Jalbrzikowski, J., Remington, J., Heydemann, P., Noble, A. G., Mets, M., Holfels, E., Withers, S., Latkany, P. and Meier, P. (2006). Outcome of treatment for congenital toxoplasmosis, 1981–2004: the national collaborative Chicago-based, congenital toxoplasmosis study. Clinical Infectious Diseases 42, 13831394.CrossRefGoogle ScholarPubMed
McLeod, R., Kieffer, F., Sautter, M., Hosten, T. and Pelloux, H. (2009). Why prevent, diagnose and treat congenital toxoplasmosis/ Memórias do Instituto Oswaldo Cruz 104, 320344.CrossRefGoogle ScholarPubMed
Meira, C. S., Costa-Silva, T. A., Vidal, J. E., Ferreira, I. M. R., Hiramoto, R. M. and Pereira-Chioccola, V. L. (2008). Use of the serum reactivity against Toxoplasma gondii excreted-secreted antigens in cerebral toxoplasmosis diagnosis in human immunodeficiency virus-infected patients. Journal of Medical Microbiology 57, 845850.CrossRefGoogle ScholarPubMed
Meira, C. S., Vidal, J. E., Costa-Silva, T. A., Frazatti-Gallina, N. and Pereira-Chioccola, V. L. (2011). Immunodiagnosis in cerebrospinal fluid of cerebral toxoplasmosis and HIV-infected patients using Toxoplasma gondii excreted/secreted antigens. Diagnostic Microbiology and Infectious Disease 71, 279285.CrossRefGoogle ScholarPubMed
Meireles, L. R., Galisteo, A. J. and Andrade, H. F. (2003). Serological survey of antibodies to Toxoplasma gondii in food animals from São Paulo state, Brazil. Brazilian Journal of Veterinary Research and Animal Science 40, 267271.CrossRefGoogle Scholar
Meireles, L. R., Galisteo, A. J., Pompeu, E. and Andrade, H. F. (2004). Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free-living cats and dogs. Tropical Medicine and International Health 9, 876881.CrossRefGoogle Scholar
Melamed, J. (1992). Isolamento do Toxoplasma gondii no Brasil. Arquivos Brasileiros de Oftalmologia 55, 90.CrossRefGoogle Scholar
Melamed, J. (2009). Contributions to the history of ocular toxoplasmosis in Southern Brazil. Memórias do Instituto Oswaldo Cruz 104, 358363.CrossRefGoogle Scholar
Melamed, J., Dornelles, F. and Eckert, G. U. (2001). Alterações tomográficas cerebrais em crianças com lesões oculares por toxoplasmose congênita. Jornal de Pediatria (Rio de Janeiro) 77, 475480.Google Scholar
Melamed, J., Eckert, G. U., Spadoni, V. S., Lago, E. G. and Uberti, F. (2009). Ocular manifestations of congenital toxoplasmosis. Eye 24, 528534.CrossRefGoogle ScholarPubMed
Mendes-de-Almeida, F., Labarthe, N., Guerrero, J., Faria, M. C. F., Branco, A. S., Pereira, C. D., Barreira, J. D. and Pereira, M. J. S. (2007). Follow-up of the health conditions of an urban colony of free-roaming cats (Felis catus Linnaeus, 1758) in the city of Rio de Janeiro, Brazil. Veterinary Parasitology 147, 915.CrossRefGoogle ScholarPubMed
Mendonça, A. O., Cerqueira, E. J. L., do Araujo, W. N., Moraes-Silva, E., Shimabukuro, F. H., Sarkis, D. T., Sherlock, Í. and Langoni, H. (2001). Inquérito sorológico para toxoplasmose em equídeos procedentes de duas regiões do Estado da Bahia, Brasil. Semina Ciências Agrárias, Londrina 22, 115118.CrossRefGoogle Scholar
Mesquita, R. T., Ziegler, A. P., Hiramoto, R. M., Vidal, J. E. and Pereira-Chioccola, V. L. (2010 a). Real-time quantitative PCR in cerebral toxoplasmosis diagnosis of Brazilian human immunodeficiency virus-infected patients. Journal of Medical Microbiology 59, 641647.CrossRefGoogle ScholarPubMed
Mesquita, R. T., Vidal, J. E. and Pereira-Chioccola, V. L. (2010 b). Molecular diagnosis of cerebral toxoplasmosis: comparing markers that determine Toxoplasma gondii by PCR in peripheral blood from HIV-infected patients. Brazilian Journal of Infectious Diseases 14, 346350.CrossRefGoogle ScholarPubMed
Mentzer, A., Perry, M., Fitzgerald, N., Barrington, S., Siddiqui, A. and Kulasegaram, R. (2012). Is it all cerebral toxoplasmosis/ Lancet 379, 286.CrossRefGoogle ScholarPubMed
Millar, P. R., Daguer, H., Vicente, R. T., da Costa, T., Sobreiro, L. G. and Amendoeira, M. R. R. (2008). Toxoplasma gondii: estudo soro-epidemiológico de suínos da região Sudoeste do Estado do Paraná. Pesquisa Veterinária Brasileira 28, 1518.CrossRefGoogle Scholar
Mioranza, S. L., Meireles, L. R., Mioranza, E. L. and de Andrade, H. F. (2008). Evidência sorológica da infecção agunda pelo Toxoplasma gondii em gestantes de Cascavel, Paraná. Revista da Sociedade Brasileira de Medicina Tropical 41, 628634.CrossRefGoogle Scholar
Moraes, H. V. Jr. (1999). Punctate outer retinal toxoplasmosis in an HIV-positive child. Ocular Immunology and Inflammation 7, 9395.CrossRefGoogle Scholar
Mozzatto, L. and Soibelmann Procianoy, R. (2003). Incidence of congenital toxoplasmosis in Southern Brazil: a prospective study. Revista do Instituto de Medicina Tropical de São Paulo 45, 147151.CrossRefGoogle ScholarPubMed
Muccioli, C., Belfort, R. Jr., Lottenberg, C., Lima, J., Santos, P., Kim, M., de Abbreu, M. T. and Neves, R. (1994). Achados oftalmológicos em AIDS: avaliação de 445 casos atendidos em um ano. Revista da Associação Médica Brasileira 40, 155158.Google Scholar
Muradian, V., Ferreira, L. R., Lopes, E. G., Esmerini, P. O., Pena, H. F., Soares, R. M. and Gennari, S. M. (2012). A survey of Neospora caninum and Toxoplasma gondii infection in urban rodents from Brazil. Journal of Parasitology 98, 128134.CrossRefGoogle ScholarPubMed
Muraro, L. S., Caramori, J. G. Jr., de Amendoeira, M. R. R., Pereira, J. A., de Oliveira, J. X., Vicente, R. T., Neves, L. B., Nicolau, J. L., Igarashi, M. and Moura, S. T. (2010). Seroprevalence of Toxoplasma gondii infection in swine matrices in Nova Mutum and Diamantino, Mato Grosso, Brazil. Revista Brasileira de Parasitologia Veterinária 19, 254255.CrossRefGoogle ScholarPubMed
Nascimento, L. V., Stollar, F., Tavares, L. B., Cavasini, C. E., Maia, I. L., Cordeiro, J. A. and Ferreira, M. U. (2001). Risk factors for toxoplasmic encephalitis in HIV-infected patients: a case-control study in Brazil. Annals of Tropical Medicine and Parasitology 95, 587593.Google ScholarPubMed
Naves, C. S., Ferreira, F. A., Carvalho, F. S. R. and Costa, G. H. N. (2005). Soroprevalência da toxoplasmose em equinos da raça Mangalarga Marchador no município de Uberlândia, Minas Gerais. Veterinária Notícias, Uberlândia 11, 4552.Google Scholar
Nery-Guimarães, F. and Franken, A. J. (1971). Toxoplasmose em primatas não humanos. II- Tentativas de infecções experimentais em Macacca mulatta, Cebus apella e Callithrix jacchus; e pesquisa de anticorpos em várias espécies de Platyrrhinus. Memórias do Instituto Oswaldo Cruz 69, 97111.CrossRefGoogle ScholarPubMed
Nery-Guimarães, F. and Lage, H. A. (1973). Produção irregular e inconstante de oocistos pela ministração de cistos de ” Toxoplasma gondii” Nicolle & Manceaux, 1909, em gatos. Memórias do Instituto Oswaldo Cruz 71, 157167.CrossRefGoogle Scholar
Nery-Guimarães, F., Franken, A. J. and Chagas, W. A. (1971). Toxoplasmose em primatas não humanos. I- Infecções naturais em “Macacca mulatta” e “Cebus paella. Memórias do Instituto Oswaldo Cruz 69, 7787.CrossRefGoogle Scholar
Neto, E. C., Amorim, F. and Lago, E. G. (2010). Estimation of the regional distribution of congenital toxoplasmosis in Brazil from the results of neonatal screening. Scientia Medica 20, 6470.Google Scholar
Neto, E. C., Anele, E., Rubim, R., Brites, A., Schulte, J., Becker, D. and Tuuminen, T. (2000). High prevalence of congenital toxoplasmosis in Brazil estimated in a 3-year prospective neonatal screening study. International Journal of Epidemiology 29, 941947.CrossRefGoogle Scholar
Neto, E. C., Rubin, R., Schulte, J. and Giugliani, R. (2004). Newborn screening for congenital infectious diseases. Emerging Infectious Diseases 10, 10691073.CrossRefGoogle ScholarPubMed
Neto, J. O. and Meira, D. A. (2004). Soroprevalência de vírus linfotrópico de células T humanas, vírus da imunodeficiência humana, sífilis e toxoplasmose em gestantes de Botucatu – São Paulo – Brasil. Fatores de risco para vírus linfotrópico de células T humanas. Revista da Sociedade Brasileira de Medicina Tropical 37, 2832.CrossRefGoogle Scholar
Netto, E. G., Munhoz, A. D., Albuquerque, G. R., Lopes, C. W. G. and Ferreira, A. M. R. (2003). Ocorrência de gatos soropositivos para Toxoplasma gondii Nicolle e Manceaux, 1909 (Apicomplexa: Toxoplasmatinae) na Cidade de Niterói, Rio de Janeiro. Revista Brasileira de Parasitologia Veterinária 12, 145149.Google Scholar
Neves, E. S., Bicudo, L. N., Carregal, E., Bueno, W. F., Ferreira, R. G., Amendoeira, M. R., Benchimol, E. and Fernandes, O. (2009). Acute acquired toxoplasmosis: clinical-laboratorial aspects and ophthalmologic evaluation in a cohort of immunocompetent patients. Memórias do Instituto Oswaldo Cruz 104, 393396.CrossRefGoogle Scholar
Nicolle, C. and Manceaux, L. (1908). Sur une infection à corps de Leishman (ou organismes voisins) du gondi. Comptes Rendus des Séances de l'Academie des Sciences 147, 763766.Google Scholar
Nicolle, C. and Manceaux, L. (1909). Sur un protozoaire nouveau du gondi. Comptes Rendus des Séances de l'Academie des Sciences 148, 369372.Google Scholar
Nishikawa, H., Arnoni, J. V., Rassier, D. S. S., Pivato, I. and Silva, S. S. (1984). Prevalência de anticorpos antitoxoplásmicos em animais domésticos no Rio Grande do Sul. Encontro de Pesquisas Veterinárias, Universidade Estadual de Londrina, 26–30 November 1984, 62.Google Scholar
Nobre, V., Braga, E., Rayes, A., Serufo, J. C., Godoy, P., Nunes, N., Antunes, C. M. and Lambertucci, J. R. (2003). Opportunistic infections in patients with AIDS admitted to an university hospital of the southeast of Brazil. Revista do Instituto de Medicina Tropical de São Paulo 45, 6974.CrossRefGoogle Scholar
Nogui, F. L. N., Mattas, S., Turcato, G. Jr. and Lewi, D. S. (2009). Neurotoxoplasmosis diagnosis for HIV-1 patients by real-time PCR of cerebrospinal fluid. Brazilian Journal of Infectious Diseases 13, 1823.CrossRefGoogle ScholarPubMed
Nóbrega, M. J. and Rosa, E. L. (2007). Toxoplasmosis retinochoroiditis after photodynamic therapy and intravitreal triamcinolone for a supposed choroidal neovascularization: a case report. Arquivos Brasileiros de Oftalmologia 70, 157160.CrossRefGoogle ScholarPubMed
Nóbrega, P. and Reis, J. (1942). Identidade dos toxoplasmas das aves e de mamíferos. Arquivos do Instituto Biológico (São Paulo) 13, 2128.Google Scholar
Ogassawara, S., Benassi, S., Hagiwara, M. K. and Larsson, C. E. (1980). Isospora spp.: Estudo sobre a ocorrência na espécie felina, na cidade de São Paulo. Revista de Microbiologia (São Paulo) 11, 126130.Google Scholar
Ogawa, L., Freire, R. L., Vidotto, O., Gondim, L. F. P. and Navarro, I. T. (2005). Occurrence of antibodies to Neospora caninum and Toxoplasma gondii in dairy cattle from the northern region of the Paraná State, Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 57, 312316.CrossRefGoogle Scholar
Ogawa, L., Navarro, I. T., Freire, R. L., de Oliveira, R. C. and Vidotto, O. (2003). Ocorrência de anticorpos anti-Toxoplasma gondii em ovinos da região de Londrina no Estado do Paraná. Semina Ciências Agrárias, Londrina 24, 5762.CrossRefGoogle Scholar
Olariu, T. R., Remington, J. S., McLeod, R., Alam, A. and Montoya, J. G. (2011). Severe congenital toxoplasmosis in the United States. Clinical and serologic findings in untreated infants. Pediatric Infectious Disease Journal 30, 10561061.CrossRefGoogle ScholarPubMed
Oliveira, L. B. and Reis, P. A. (2004). Photodynamic therapy-treated choroidal neovascular membrane secondary to toxoplasmic retinochoroiditis. Graefe's Archive for Clinical and Experimental Ophthalmology 242, 10281030.CrossRefGoogle ScholarPubMed
Oréfice, J. L., Costa, R. A., Oréfice, F., Campos, W., da Costa-Lima, D. and Scott, I. U. (2007). Vitreoretinal morphology in active ocular toxoplasmosis: a prospective study by optical coherence tomography. British Journal of Ophthalmology 91, 773780.CrossRefGoogle ScholarPubMed
Ortolani, E. S., Gennari, S. M., Pinheiro, S. R., Rodrigues, A. A. R., Chiebao, D. P. and Soares, R. M. (2005). Prevalência de anticorpos anti-Toxoplasma gondii em populações animais das aldeias indígenas Krucutu e Morro da Saudade, no município de São Paulo, Brasil. Veterinária e Zootecnia 12, 2528.Google Scholar
Osorio, L. A. (1986). Inflamações Intra-oculares. Palotti. Porto Alegre, Brazil.Google Scholar
Passos, L. M. F., Lima, J. D. and Figueiredo, B. L. (1984 a). Freqüência de anticorpos anti-Toxoplasma gondii em suínos abatidos em Belo Horizonte, Minas Gerais. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 36, 649657.Google Scholar
Passos, L. M. F., Lima, J. D. and Figueiredo, B. L. (1984 b). Determinação da infecção por Toxoplasma gondii em bovinos abatidos em Belo Horizonte (MG) através da freqüência de anticorpos e tentativa de isolamento a partir de musculatura diafragmática. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 36, 581589.Google Scholar
Passos, L. N., de Araújo Filho, O. F. and de Andrade, H. F. Jr. (2000). Toxoplasma encephalitis in AIDS patients in São Paulo during 1988 and 1991. A comparative retrospective analysis. Revista do Instituto de Medicina Tropical de São Paulo 42, 141145.CrossRefGoogle Scholar
Peixoto, C. M. S. and Lopes, C. W. G. (1990). Isolamento do Toxoplasma gondii Nicolle & Manceaux, 1909 (Apicomplexa: Toxoplasmatinae) em galinhas naturalmente infectadas. Arquivos da Universidade Federal Rural do Rio de Janeiro 13, 105111.Google Scholar
Pena, H. F. J., Soares, R. M., Amaku, M., Dubey, J. P. and Gennari, S. M. (2006). Toxoplasma gondii infection in cats from São Paulo state, Brazil: seroprevalence, oocyst shedding, isolation in mice, and biologic and molecular characterization. Research in Veterinary Science 81, 5867.CrossRefGoogle Scholar
Pena, H. F. J., Gennari, S. M., Dubey, J. P. and Su, C. (2008). Population structure and mouse-virulence of Toxoplasma gondii in Brazil. International Journal for Parasitology 38, 561569.CrossRefGoogle ScholarPubMed
Pena, H. F. J., Marvulo, M. F. V., Horta, M. C., Silva, M. A., Silva, J. C. R., Siqueira, D. B., Lima, P. A. C. P., Vitaliano, S. N. and Gennari, S. M. (2011). Isolation and genetic characterisation of Toxoplasma gondii from a red-handed howler monkey (Alouatta belzebul), a jaguarundi (Puma yagouaroundi), and a black-eared opossum (Didelphis aurita) from Brazil. Veterinary Parasitology 175, 377381.CrossRefGoogle Scholar
Pereira-Chioccola, V. L., Vidal, J. E. and Su, C. (2009). Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiology 4, 13631379.CrossRefGoogle ScholarPubMed
Pereira, I. C. (2005). Soroprevalência de anticorpos para Toxoplasma gondii em suínos e características epidemiológicas de estabelecimentos de criação industrial e artesanal da região de Pelotas-RS.Dissertation. Universidade Federal de Pelotas. Faculdade de Veterinária 1–99.Google Scholar
Pescador, C. A., Oliveira, E. C., Pedroso, P. M. O., Okuda, L. H., Corbellini, L. G. and Driemeier, D. (2007). Perdas reprodutivas associadas com infecção por Toxoplasma gondii em caprinos no sul do Brasil. Pesquisa Veterinária Brasileira 27, 167171.CrossRefGoogle Scholar
Petrilli, A. M. N., Belfort, R. Jr., Moreira, J. B. C. and Nishi, M. (1987). Uveítes na infância em São Paulo. Arquivos Brasileiros de Oftalmologia 50, 203207.Google Scholar
Pezerico, G. B., Pezerico, S. B., Silva, R. C., Hoffmann, J. L., Camargo, L. B. and Langoni, H. (2007). Ocorrência de anticorpos anti-Toxoplasma gondii e anti-Leptospira spp. em suínos abatidos em três abatedouros dos estados de Minas Gerais e São Paulo. Arquivos do Instituto Biológico (São Paulo) 74, 267270.CrossRefGoogle Scholar
Piassa, F. R., de Araújo, J. B., da Rosa, R. C., Mattei, R. J., da Silva, R. C., Langoni, H. and da Silva, A. V. (2010). Prevalence and risk factors for Toxoplasma gondii infection in certified and non-certified pig breeding farms in the Toledo microregion, PR, Brazil. Revista Brasileira de Parasitologia Veterinária 19, 152156.Google ScholarPubMed
Pinheiro, J. W., Mota, R. A., Oliveira, A. A. F., Faria, E. B., Gondim, L. F. P., da Silva, A. V. and Anderlini, G. A. (2009). Prevalence and risk factors associated to infection by Toxoplasma gondii in ovine in the State of Alagoas, Brazil. Parasitology Research 105, 709715.CrossRefGoogle ScholarPubMed
Pinheiro, S. R. A. A., Oréfice, F., Andrade, G. M. Q. and Caiaffa, W. T. (1990). Estudo da toxoplasmose ocular em famílias de pacientes portadores de toxoplasmose congênita, sistêmica e ocular. Arquivos Brasileiros de Oftalmologia 53, 46.CrossRefGoogle Scholar
Pinto, L. D., de Araujo, F. A. P., Stobb, N. S. and Marques, S. M. T. (2009). Soroepidemiologia de Toxoplasma gondii em gatos domiciliados atendidos em clínicas particulares de Porto Alegre, RS, Brasil. Ciência Rural, Santa Maria 39, 24642469.CrossRefGoogle Scholar
Pires, W. and dos Santos, V. (1934). Lesões histo-patológicas observadas num caso de toxoplasmose natural do pombo. Revista do Departamento Nacional da Producção Animal 1, 1923.Google Scholar
Pomares, C., Ajzenberg, D., Bornard, L., Bernardin, G., Hasseine, L., Dardé, M. L. and Marty, P. (2011). Toxoplasmosis and horse meat, France. Emerging Infectious Diseases 17, 13271328.CrossRefGoogle ScholarPubMed
Portela, R. W. D., Bethony, J., Costa, M. I., Gazzinelli, A., Vitor, R. W. A., Hermeto, F. M., Correa-Oliveira, R. and Gazzinelli, R. T. (2004). A multihousehold study reveals a positive correlation between age, severity of ocular toxoplasmosis, and levels of glycoinositolphospholipid-specific immunoglobulin A. Journal of Infectious Diseases 190, 175183.CrossRefGoogle ScholarPubMed
Porto, A. M. F., de Amorim, M. M. R., Coelho, I. C. N. and Santos, L. C. (2008). Perfil sorológico para toxoplasmose em gestantes atendidas em maternidade. Revista da Associação Médica Brasileira 54, 242248.CrossRefGoogle Scholar
Ragozo, A. M. A., Yai, L. E. O., Oliveira, L. N., Dias, R. A., Dubey, J. P. and Gennari, S. M. (2008). Seroprevalence and isolation of Toxoplasma gondii from sheep from São Paulo State, Brazil. Journal of Parasitology 94, 12591263.CrossRefGoogle ScholarPubMed
Ragozo, A. M. A., Yai, L. E. O., Oliveira, L. N., Dias, R. A., Gonçalves, H. C., Azevedo, S. S., Dubey, J. P. and Gennari, S. M. (2009). Isolation of Toxoplasma gondii from goats from Brazil. Journal of Parasitology 95, 323326.CrossRefGoogle ScholarPubMed
Ragozo, A. M. A., Pena, H. F. J., Yai, L. E. O., Su, C. and Gennari, S. M. (2010). Genetic diversity among Toxoplasma gondii isolates of small ruminants from Brazil: novel genotypes revealed. Veterinary Parasitology 170, 307312.CrossRefGoogle ScholarPubMed
Rebouças, E. C., Dos Santos, E. L., Do Carmo, M. L. S., Cavalcante, Z. and Favali, C. (2011). Seroprevalence of Toxoplasma infection among pregnant women in Bahia, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 105, 670671.CrossRefGoogle ScholarPubMed
Rehder, J. R., Burnier, M., Pavesio, C. E., Kim, M. K., Rigueiro, M., Petrilli, A. M. N. and Belfort, R. Jr. (1988). Acute unilateral toxoplasmic iridocyclitis in an AIDS patient. American Journal of Ophthalmology 106, 740741.CrossRefGoogle Scholar
Reiche, E. M. V., Morimoto, H. K., Farias, G. N., Hisatsugu, K. R., Geller, L., Gomes, A. C. L. F., Inoue, H. Y., Rodrigues, G. and Matsuo, T. (2000). Prevalência de tripanossomíase americana, sífilis, toxoplasmose, rubéola, hepatite B, hepatite C e da infecção pelo vírus da imunodeficiência humana, avaliada por intermédio de testes sorológicos, em gestantes atendidas no período de 1996 a 1998 no Hospital Universitário Regional Norte do Paraná (Universidade Estadual de Londrina, Paraná, Brasil). Revista da Sociedade Brasileira de Medicina Tropical 33, 519527.CrossRefGoogle Scholar
Reis, F. V., Soares, C., Watanabe, M., Colombini, G. U. I. and Leite, L. A. M. (1998 a). Causas de cegueira entre os alunos em curso no Instituto Benjamin Constant no ano de 1996. Revista Brasileira de Oftalmologia 57, 619623.Google Scholar
Reis, J. and Nóbrega, P. (1936). Toxoplasmose. In Tratado de Doenças das Aves. Ed. Instituto Biológico, São Paulo302306.Google Scholar
Reis, P. A. C., Campos, C. M. C. and Fernandes, L. C. (1998 b). Características da população portadora de visão subnormal do Hospital São Geraldo.Um estudo retrospectivo de 435 casos. Revista Brasileira de Oftalmologia 57, 287294.Google Scholar
Reis, M. M., Tessaro, M. M. and d'Azevedo, P. A. (2006). Perfil sorológico para toxoplasmose em gestantes de um hospital público de Porto Alegre. Revista Brasileira de Ginecologia e Obstetrícia 28, 158164.Google Scholar
Remington, J. S., McLeod, R., Wilson, C. B. and Desmonts, G. (2011). Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant, 7th Edn. (ed. Remington, J. S., Klein, J. O., Wilson, C. B., Nizet, V. and Maldonado, Y. A.), pp. 9181041. Elsevier Saunders, Pennsylvania, USA.CrossRefGoogle Scholar
Rey, L. C. and Ramalho, I. L. C. (1999). Seroprevalence of toxoplasmosis in Fortaleza, Ceará, Brazil. Revista do Instituto de Medicina Tropical de São Paulo. 41, 171174.CrossRefGoogle ScholarPubMed
Ricciardi, I. D., Sandoval, E. F. D. and Mayrink, W. (1975). Preliminary notes on the prevalence of human toxoplasmosis in Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 516517.CrossRefGoogle ScholarPubMed
Ricciardi, I. D., Sabroza, P. C., Sandoval, E. D. and Mayrink, W. (1978). Seroepidemiological study on the prevalence of human toxoplasmosis in Brazil. Revista de Microbiologia 9, 181187.Google Scholar
Roberts, T., Murrell, K. D. and Marks, S. (1994). Economic losses caused by foodborne parasitic diseases. Parasitology Today 10, 419423.CrossRefGoogle ScholarPubMed
Rodrigues, I. M. X., Castro, A. M., Gomes, M. B. F., Amaral, W. N. and Avelino, M. M. (2009). Congenital toxoplasmosis: evaluation of serological methods for the detection of anti-Toxoplasma gondii IgM and IgA antibodies. Memórias do Instituto Oswaldo Cruz 104, 434440.CrossRefGoogle ScholarPubMed
Romanelli, P. R., Freire, R. L., Vidotto, O., Marana, E. R. M., Ogawa, L., de Paula, V. S. O., Garcia, J. L. and Navarro, I. T. (2007). Prevalence of Neospora caninum and Toxoplasma gondii in sheep and dogs from Guarapuava farms, Paraná State, Brazil. Research in Veterinary Science 82, 202207.CrossRefGoogle ScholarPubMed
Rosa, L. D., de Moura, A. B., Trevisani, N., Medeiros, A. P., Sartor, A. A., de Souza, A. P. and Bellato, V. (2010). Toxoplasma gondii antibodies on domiciled cats from Lages municipality, Santa Catarina State, Brazil. Revista Brasileira de Parasitologia Veterinária 19, 268269.CrossRefGoogle ScholarPubMed
Rosemberg, S., Lopes, M. B. S. and Tsanaclis, A. M. (1986). Neuropathology of acquired immunodeficiency syndrome (AIDS). Analysis of 22 Brazilian cases. Journal of the Neurological Sciences 76, 187198.CrossRefGoogle ScholarPubMed
Rossi, G. F., Cabral, D. D., Ribeiro, D. P., Pajuaba, A. C. A. M., Corrêa, R. R., Moreira, R. Q., Mineo, T. W. P., Mineo, J. R. and Silva, D. A. O. (2011). Evaluation of Toxoplasma gondii and Neospora caninum infections in sheep from Uberlândia, Minas Gerais State, Brazil, by different serological methods. Veterinary Parasitology 175, 252259.CrossRefGoogle Scholar
Sabin, A. B. and Feldman, H. A. (1948). Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (Toxoplasma). Science 108, 660663.CrossRefGoogle ScholarPubMed
Salata, E., Yoshida, E. L. A., Pereira, E. A. and Corrêa, F. M. A. (1985). Toxoplasmose em animais silvestres e domésticos da região de Botucatu, Estado de São Paulo, Brasil. Revista do Instituto de Medicina Tropical de São Paulo 27, 2022.CrossRefGoogle Scholar
Santos, A. P. C., Dantas, R. P. C., Lima, T. O., Araújo, R. M., Daltro, A. S. T., Alves, J. A. B. and Inagaki, A. D. M. (2010 a). Ocorrência de fatores de risco para toxoplasmose em um grupo de gestantes. Revista Nursing 13, 291295.Google Scholar
Santos, S. L., de Souza Costa, K., Gondim, L. Q., da Silva, M. S. A., Uzêda, R. S., Abe-Sandes, K. and Gondim, L. F. P. (2010 b). Investigation of Neospora caninum, Hammondia sp., and Toxoplasma gondii in tissues from slaughtered beef cattle in Bahia, Brazil. Parasitology Research 106, 457461.CrossRefGoogle ScholarPubMed
Santos, S. M., do Amaral, V. and Rebouças, M. (1978). Prevalência de anticorpos antiToxoplasma, por hemaglutinaçao indireta, em soros de suínos provenientes de diferentes municípios do Estado de São Paulo, Brasil. O Biológico 44, 149153.Google Scholar
Santos, S. M., do Amaral, V., Rebouças, M. M. and Drummond, L. S. (1983). Anticorpos antitoxoplasma detectados por hemaglutinação indireta em soros de gatos domésticos provenientes da capital do estado de São Paulo, Brasil. O Biológico 49, 163165.Google Scholar
Santos, T. R., Costa, A. J., Toniollo, G. H., Luvizotto, M. C. R., Benetti, A. H., Santos, R. R., Matta, D. H., Lopes, W. D. Z., Oliveira, J. A. and Oliveira, G. P. (2009). Prevalence of anti-Toxoplasma gondii antibodies in dairy cattle, dogs, and humans from the Jauru micro-region, Mato Grosso state, Brazil. Veterinary Parasitology 161, 324326.CrossRefGoogle ScholarPubMed
Sartori, A. L., Minamisava, R., Avelino, M. M. and Martins, C. A. (2011). Triagem pré-natal para toxoplasmose e fatores associados à soropositividade de gestantes em Goiânia, Goiás. Revista Brasileira de Ginecologia e Obstetrícia 33, 9398.CrossRefGoogle ScholarPubMed
Sáfadi, M. A. P., Berezin, E. N., Farhat, C. K. and Carvalho, E. S. (2003). Clinical presentation and follow up of children with congenital toxoplasmosis in Brazil. Brazilian Journal of Infectious Diseases 7, 325331.Google ScholarPubMed
Schellini, S. A., Zambrim, M. A. T. V. B., Amarante, R. B., Jorge, E. C. and Silva, M. R. B. M. (1993). Toxoplasmose ocular – Análise de 100 pacientes tratados na Faculdade de Medicina de Botucatu. Revista Brasileira de Oftalmologia 52, 3540.Google Scholar
Schenk, M. A. M., Lima, J. D. and Schenk, J. A. P. (1977). Isolamento de Toxoplasma gondii em suínos do estado de Minas Gerais. Arquivos da Escola de Veterinária da Universidade Federal de Minas Gerais 29, 2530.Google Scholar
Schenk, M. A. M., Lima, J. D. and Viana, F. C. (1976). Frequência da toxoplasmose em suínos abatidos em Belo Horizonte, Minas Gerais. Arquivos da Escola de Veterinária da Universidade Federal de Minas Gerais 28, 261266.Google Scholar
Sebben, J. C., Melamed, J., Silveira, S. M., Locatelli, C. I., Fridman, D. and Ferretti, R. (1995). Influência de fatores climáticos na toxoplasmose ocular em Guaporé – Brasil. Revista Brasileira de Oftalmologia 54, 303307.Google Scholar
Segundo, G. R. S., Silva, D. A. O., Mineo, J. R. and Ferreira, M. S. (2004). A comparative study of congenital toxoplasmosis between public and private hospitals from Uberlândia,MG, Brazil. Memórias do Instituto Oswaldo Cruz 99, 1317.CrossRefGoogle ScholarPubMed
Sella, M. Z., Navarro, I. T., Vidotto, O., Freire, R. L. and Shida, P. N. (1994). Epidemiologia da toxoplasmose caprina: levantamento sorológico do Toxoplasma gondii em caprinos leiteiros na micro região de Londrina, Paraná, Brasil. Revista Brasileira de Parasitologia Veterinária 3, 1316.Google Scholar
Silva, A. C. A. L., Rodrigues, B. S. C., Micheletti, A. M. R., Tostes, S., Meneses, A. C. O., Silva-Vergara, M. L. and Adad, S. J. (2012). Neuropathology of AIDS: an autopsy review of 284 cases from Brazil comparing the findings pre- and post-HAART (Highly Active Antiretroviral Therapy) and pre- and postmortem correlation. AIDS Research and Treatment 2012, 19.CrossRefGoogle ScholarPubMed
Silva, C. S. P., de Souza Neves, E., Benchimol, E. I. and de Moraes, D. R. (2008). Postnatal acquired toxoplasmosis patients in an infectious diseases reference center. Brazilian Journal of Infectious Diseases 12, 438441.Google Scholar
Silva, J. C. R., Gennari, S. M., Ragozo, A. M. A., Amajones, V. R., Magnabosco, C., Yai, L. E. O., Ferreira-Neto, J. S. and Dubey, J. P. (2002). Prevalence of Toxoplasma gondii antibodies in sera of domestic cats from Guarulhos and São Paulo, Brazil. Journal of Parasitology 88, 419420.Google ScholarPubMed
Silva, K. L. M. V. and de la Rue, M. L. (2006). Possibilidade da transmissão congênita de Toxoplasma gondii em ovinos através de seguimento sorológico no município de Rosário do Sul, RS, Brasil. Ciência Rural, Santa Maria 36, 892897.CrossRefGoogle Scholar
Silva, M. S. A., Uzêda, R. S., Costa, K. S., Santos, S. L., Macedo, A. C. C., Abe-Sandes, K. and Gondim, L. F. P. (2009). Detection of Hammondia heydorni and coccidia (Neospora caninum and Toxoplasma gondii) in goats slaughtered in Bahia, Brazil. Veterinary Parasitology 162, 156159.CrossRefGoogle ScholarPubMed
Silva, N. R. S., da Costa, A. J. and de Souza, S. M. G. (1980). Prevalência de anticorpos antitoxoplásmicos em ovinos, determinada pela reação de imunofluorscência indireta (RIFI), no município de São Lourenço do Sul, RS. Arquivos da Faculdade de Veterinária UFRGS 8, 8992.Google Scholar
Silva, N. R. S., Chaplin, E. L., Araujo, F. A. P. and Pereira, R. A. P. (1981 a). Prevalência de anticorpos toxoplásmicos em soros de eqüinos no município de Porto Alegre, RS. Arquivos da Faculdade de Veterinária UFRGS 9, 105107.Google Scholar
Silva, N. R. S., Chaplin, E. L., Mendez, L. D. V. and Araújo, F. A. P. (1981 b). Determinação de anticorpos toxoplásmicos em soros de suínos obtidos em matadouros, na região do Alto Taquarí, RS, Brasil. Arquivos da Faculdade de Veterinária UFRGS 9, 3338.Google Scholar
Silva, N. R. S., Chaplin, E. L., Araújo, F. A. P. and Mendez, L. D. V. (1982/1983). Freqüência de anticorpos de Toxoplasma gondii em soros de bovinos de leite da Grande Porto Alegre, RS. Arquivos da Faculdade de Veterinária UFRGS 10–11, 8184.Google Scholar
Silva, R. A. M. S., Bonassi, C., Dalla Costa, O. A. and Morés, N. (2003). Serosurvey on toxoplasmosis in outdoor pig production systems of the southern region of Brazil. Revue d'élevage et de médecine vétérinaire des pays tropicaux 56, 145147.Google Scholar
Silva, S. P., Mota, R. A., Faria, E. B., Fernandes, E. F. T. S., Neto, O. L. S., Albuquerque, P. P. F. and Dias, H. L. T. (2010). Anticorpos IgG anti-Neospora caninum e Toxoplasma gondii em búfalas (Bubalus bubalis) criadas no estado do Pará. Pesquisa Veterinária Brasileira 30, 443446.CrossRefGoogle Scholar
Silveira, C. A. M. (2002). Toxoplasmose: Dúvidas e Controvérsias. EDIFAPES, Erechim, Rio Grande do Sul, Brazil. 1152.Google Scholar
Silveira, C., Belfort, R. Jr. and Burnier, M. N. N. Jr. (1987). Toxoplasmose ocular: identificação de cistos de Toxoplasma gondii na retina de irmãos não gêmeos com diagnóstico de toxoplasmose ocular recidivante; primeiro caso mundial. Arquivos Brasileiros de Oftalmologia 50, 215218.Google Scholar
Silveira, C., Belfort, R. Jr., Burnier, M. Jr. and Nussenblatt, R. (1988). Acquired toxoplasmic infection as the cause of toxoplasmic retinochoroiditis in families. American Journal of Ophthalmology 106, 362364.CrossRefGoogle ScholarPubMed
Silveira, C., Belfort, R. Jr., Nussenblatt, R., Farah, M., Takahashi, W., Imamura, P. and Burnier, M. Jr. (1989). Unilateral pigmentary retinopathy associated with ocular toxoplasmosis. American Journal of Ophthalmology 107, 682684.CrossRefGoogle ScholarPubMed
Silveira, C., Belfort, R. Jr., Muccioli, C., Abreu, M. T., Martins, M. C., Victora, C., Nussenblatt, R. B. and Holland, G. N. (2001). A follow-up study of Toxoplasma gondii infection in Southern Brazil. American Journal of Ophthalmology 131, 351354.CrossRefGoogle ScholarPubMed
Silveira, C., Belfort, R. Jr., Muccioli, C., Holland, G. N., Victora, C. G., Horta, B. L., Yu, F. and Nussenblatt, R. B. (2002). The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. American Journal of Ophthalmology 134, 4146.CrossRefGoogle ScholarPubMed
Silveira, C., Ferreira, R., Muccioli, C., Nussenblatt, R. and Belfort, R. Jr. (2003). Toxoplasmosis transmitted to a newborn from the mother infected 20 years earlier. American Journal of Ophthalmology 136, 370371.CrossRefGoogle ScholarPubMed
Silveira, C., Vallochi, A. L., da Silva, U. R., Muccioli, C., Holland, G. N., Nussenblatt, R. B., Belfort, R. Jr. and Rizzo, L. V. (2011). Toxoplasma gondii in the peripheral blood of patients with acute and chronic toxoplasmosis. British Journal of Ophthalmology 95, 396400.CrossRefGoogle ScholarPubMed
Soares, H. S., Ahid, S. M. M., Bezerra, A. C. D. S., Pena, H. F. J., Dias, R. A. and Gennari, S. M. (2009). Prevalence of anti-Toxoplasma gondii and anti-Neospora caninum antibodies in sheep from Mossoró, Rio Grande do Norte, Brazil. Veterinary Parasitology 160, 211214.CrossRefGoogle Scholar
Soares, R. M., Silveira, L. H., da Silva, A. V., Ragozo, A., Galli, S., Lopes, E. G., Gennari, S. M. and Pena, H. F. J. (2011). Genotyping of Toxoplasma gondii isolates from free range chickens in the Pantanal area of Brazil. Veterinary Parasitology 178, 2934.CrossRefGoogle ScholarPubMed
Sobrinho, L. S., Rossi, C. N., Vides, J. P., Braga, E. T., Gomes, A. A. D., de Lima, V. M. F., Perri, S. H. V., Generoso, D., Langoni, H., Leutenegger, C., Biondo, A. W., Laurenti, M. D. and Marcondes, M. (2012). Coinfection of Leishmania chagasi with Toxoplasma gondii, Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) in cats from an endemic area of zoonotic visceral leishmaniasis. Veterinary Parasitology (in the Press) doi:10.1016/jvetpar.2012.01.010CrossRefGoogle ScholarPubMed
Soccol, V. T., de Castro, E. A., Gazda, T. L., Garcia, G., Richartz, R. R. T. B. and Dittrich, R. L. (2009). Ocorrência de anticorpos anti-Toxoplasma gondii em ovinos das áreas urbanas e periurbanas de Curitiba, Paraná. Revista Brasileira de Parasitologia Veterinária 18 (Suppl. 1), 6970.CrossRefGoogle ScholarPubMed
Sogorb, F., Jamra, L. M. F. and Guimarães, E. C. (1977). Toxoplasmose em animais de São Paulo, Brasil. Revista do Instituto de Medicina Tropical de São Paulo 19, 191194.Google Scholar
Sogorb, F., Jamra, L. M. F., Guimarães, E. C. and Deane, M. P. (1972). Toxoplasmose espontânea em animais domésticos e silvestres, em São Paulo. Revista do Instituto de Medicina Tropical de São Paulo 14, 314320.Google Scholar
Souza, C. O., Tashima, N. T., da Silva, M. A. and Tumitan, A. R. P. (2010). Estudo transversal de toxoplasmose em alunas de um curso superior da região de Presidente Prudente, Estado de São Paulo. Revista da Sociedade Brasileira de Medicina Tropical 43, 5961.CrossRefGoogle ScholarPubMed
Souza, W. J. S., Coutinho, S. G., Lopes, C. W. G., Dos Santos, C. S., Neves, N. M. and Cruz, A. M. (1987). Epidemiological aspects of toxoplasmosis in school children residing in localities with urban or rural characteristics within the city of Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz 82, 475482.CrossRefGoogle ScholarPubMed
Spagnol, F. H., Paranhos, E. B., Oliveira, L. L. S., de Medeiros, S. M., Lopes, C. W. G. and Albuquerque, G. R. (2009). Prevalência de anticorpos anti-Toxoplasma gondii em bovinos abatidos em matadouros do estado da Bahia, Brasil. Revista Brasileira de Parasitologia Veterinária 18, 4245.CrossRefGoogle Scholar
Spalding, S. M., Amendoeira, M. R. R., Ribeiro, L. C., Silveira, C., Garcia, A. P. and Camillo-Coura, L. (2003). Estudo prospectivo de gestantes e seus bebês com risco de transmissão de toxoplasmose congênita em município do Rio Grande do Sul. Revista da Sociedade Brasileira de Medicina Tropical 36, 483491.CrossRefGoogle ScholarPubMed
Spalding, S. M., Amendoeira, M. R. R., Klein, C. H. and Ribeiro, L. C. (2005). Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Revista da Sociedade Brasileira de Medicina Tropical 38, 173177.CrossRefGoogle ScholarPubMed
Splendore, A. (1908). Un nuovo protozoo parassita de conigli incontrato nelle lesioni anatomiche d'una malattia che ricorda in molti punti il Kala-azar dell’ uomo. Nota preliminare. Revista da Sociedade Scientífica de São Paulo 3, 109112.Google Scholar
Splendore (misspelled in the paper), A. (2009). A new protozoan parasite in rabbits. International Journal for Parasitology 39, 861862.CrossRefGoogle Scholar
Spósito Filha, E., do Amaral, V., Macruz, R., Rebouças, M. M. and Barci, L. A. G. (1986). Toxoplasma gondii em eqüinos: estudo sorológico e tentativa de isolamento. O Biológico 52, 7374.Google Scholar
Spósito Filha, E., do Amaral, V., Macruz, R., Rebouças, M. M., Santos, S. M. and Drumond, L. S. (1992). Toxoplasma gondii em ovinos: isolamento do parasita a partir de diafragmas de animais procedentes do estado do Rio Grande do Sul abatidos em matadouros de São Paulo, para consumo humano. Revista Brasileira de Parasitologia Veterinária 1, 117119.Google Scholar
Spósito Filha, E., do Amaral, V., Santos, S. M., Macruz, R. and Rebouças, M. M. (1983). Toxoplasma gondii em caprinos: isolamento de cepas a partir de diafragmas de animais oriundos do estado da Bahia e abatidos em matadouros de São Paulo-Brasil. O Biológico 49, 199206.Google Scholar
Springer, L. (1942). Toxoplasmose epizootica entre pombos. Arquivos de Biologia 26, 7476.Google Scholar
Sroka, S., Bartelheimer, N., Winter, A., Heukelbach, J., Ariza, L., Ribeiro, H., Oliveira, F. A., Queiroz, A. J. N., Alencar, C. and Liesenfeld, O. (2010). Prevalence and risk factors of toxoplasmosis among pregnant women in Fortaleza, Northeastern Brazil. American Journal of Tropical Medicine and Hygiene 83, 528533.CrossRefGoogle ScholarPubMed
Stachissini, A. V. M. (2005). Influência da infecção pelo vírus da artrite-encefalite caprina nos perfis soro-epidemiológicos em caprinos infectados pelo Toxoplasma gondii e Neospora caninum [thesis]. Botucatu, SP, Brazil: Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulist. 1–119.Google Scholar
Stella, J. H. (2004). Rastreamento pré-natal para toxoplasmose na rede básica de saúde em Campinas – Prevalência dos diferentes perfis sorológicos e comparação da rotina vigente com uma nova proposta [dissertation]. Campinas, SP, Brazil: Faculdade de Ciências Médicas, Universidade Estadual de Campinas. 1–83.Google Scholar
Stillwaggon, E., Carrier, C. S., Sautter, M. and McLeod, R. (2011). Maternal serologic screening to prevent congenital toxoplasmosis: a decision-analytic economic model. PLoS Neglected Tropical Diseases 5, e1333.CrossRefGoogle ScholarPubMed
Su, C., Shwab, E. K., Zhou, P., Zhu, X. Q. and Dubey, J. P. (2010). Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 137, 111.CrossRefGoogle ScholarPubMed
Su, C., Zhang, X. and Dubey, J. P. (2006). Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. International Journal for Parasitology 36, 841848.CrossRefGoogle ScholarPubMed
Suaréz-Aranda, F., Galisteo, A. J., Hiramoto, R. M., Cardoso, R. P. A., Meireles, L. R., Miguel, O. and Andrade, H. F. Jr. (2000). The prevalence and avidity of Toxoplasma gondii IgG antibodies in pigs from Brazil and Peru. Veterinary Parasitology 91, 2332.CrossRefGoogle ScholarPubMed
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.CrossRefGoogle ScholarPubMed
The SYROCOT (Systematic Review on Congenital Toxoplasmosis) Study Group. (2007). Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. Lancet 369, 115122.CrossRefGoogle Scholar
Torres, C. M. (1927). Sur une nouvelle maladie de l'homme, characterisee par la presence d'un parasite intracellulaire, tres proche du Toxoplasma et de l‘Encephalitozoon, dans le tissue musculaire cardiaque, les muscles du squelette, le tissu cellulaire souscutane et le tissue nerveux. Comptes rendus des séances de la Société de Biologie 97, 17781781.Google Scholar
Tsutsui, V. S., Freire, R. L., Garcia, J. L., Gennari, S. M., Vieira, D. P., Marana, E. R. M., Prudêncio, L. B. and Navarro, I. T. (2007). Detection of Toxoplasma gondii by PCR and mouse bioassay in commercial cuts of pork from experimentally infected pigs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 59, 3034.CrossRefGoogle Scholar
Tsutsui, V. S., Navarro, I. T., Freire, R. L., Freitas, J. C., Prudencio, L. B., Delba, A. C. B. and Marana, E. R. M. (2003). Soroepidemiologia e fatores associados à transmissão do Toxoplasma gondii im suínos do norte do Paraná. Archives of Veterinary Science 8, 2734.CrossRefGoogle Scholar
Túry, E., Costa, A. M., Pereira, W. L. A., Castro, P. H. G. and Vale, W. G. (1999). Ocorrência de toxoplasmose entre primatas amazônicos mantidos em cativeiro. A Hora Veterinária 19, 2731.Google Scholar
Ueno, T. E. H., Gonçalves, V. S. P., Heinemann, M. B., Dilli, T. L. B., Akimoto, B. M., de Souza, S. L. P., Gennari, S. M. and Soares, R. M. (2009). Prevalence of Toxoplasma gondii and Neospora caninum infections in sheep from Federal District, central region of Brazil. Tropical Animal Health and Production 41, 547552.CrossRefGoogle ScholarPubMed
Uzêda, R. S., Fernández, S. Y., Jesus, E. E. V., Pinheiro, A. M., Ayres, M. C. C., Spinola, S., Barbosa Junior, H. V. and Almeida, M. A. O. (2004). Fatores relacionados à presença de anticorpos IgG anti-Toxoplasma gondii em caprinos leiteiros do Estado da Bahia. Revista Brasileira Saúde e Produção Animal 5, 18.Google Scholar
Vallochi, A. L., Muccioli, C., Martins, M. C., Silveira, C., Belfort, R. and Rizzo, L. V. (2005). The genotype of Toxoplasma gondii strains causing ocular toxoplasmosis in humans in Brazil. American Journal of Ophthalmology 139, 350351.CrossRefGoogle ScholarPubMed
Varella, I. S., Canti, I. C. T., Santos, B. R., Coppini, A. Z., Argondizzo, L. C., Tonin, C. and Wagner, M. B. (2009). Prevalence of acute toxoplasmosis infection among 41,112 pregnant women and the mother-to-child transmission rate in a public hospital in south Brazil. Memórias do Instituto Oswaldo Cruz 104, 383388.CrossRefGoogle Scholar
Varella, I. S., Wagner, M. B., Darela, A. C., Nunes, L. M. and Müller, R. W. (2003). Prevalência de soropositividade para toxoplasmose em gestantes. Jornal de Pediatria (Rio de Janeiro) 79, 6974.Google Scholar
Vasconcelos, O. T., Costa, A. J. and Avila, F. A. (1979). Aspectos epidemiológicos da infecção por Toxoplasma gondii em suínos. Cientifica 6, 8387.Google Scholar
Vasconcelos-Santos, D. V., Azevedo, D. O. M., Campos, W. R., Oréfice, F., Queiroz-Andrade, G. M., Carellos, E. V. M., Romanelli, R. M. C., Januário, J. N., Resende, L. M., Martins, O. A., Carneiro, A. C. A. V., Vitor, R. W. A. and Caiaffa, W. T. (2009). Congenital toxoplasmosis in southeastern Brazil: results of early ophthalmologic examination of a large cohort of neonates. Ophthalmology 116, 21992205.CrossRefGoogle ScholarPubMed
Vaudaux, J. D., Muccioli, C., James, E. R., Silveira, C., Magargal, S. L., Jung, C., Dubey, J. P., Jones, J. L., Doymaz, M. Z., Bruckner, D. A., Belfort, R. Jr., Holland, G. N. and Grigg, M. E. (2010). Identification of an atypical strain of Toxoplasma gondii as the cause of a waterborne outbreak of toxoplasmosis in Santa Isabel do Ivaí, Brazil. Journal of Infectious Diseases 202, 12261233.CrossRefGoogle ScholarPubMed
Vaz, R. S., Thomaz-Soccol, V., Sumikawa, E. and Guimarães, A. T. B. (2010). Serological prevalence of Toxoplasma gondii antibodies in pregnant women from Southern Brazil. Parasitology Research 106, 661665.CrossRefGoogle ScholarPubMed
Vidal, J. E., Colombo, F. A., de Oliveira, A. C. P., Focaccia, R. and Pereira-Chioccola, V. L. (2004). PCR assay using cerebrospinal fluid for diagnosis of cerebral toxoplasmosis in Brazilian AIDS patients. Journal of Clinical Microbiology 42, 47654768.CrossRefGoogle ScholarPubMed
Vidal, J. E., Diaz, A. V. H., de Oliveira, A. C. P., Dauar, R. F., Colombo, F. A. and Pereira-Chioccola, V. L. (2011). Importance of high IgG anti-Toxoplasma gondii titers and PCR detection of T. gondii DNA in peripheral blood samples for the diagnosis of AIDS-related cerebral toxoplasmosis: a case-control study. Brazilian Journal of Infectious Diseases 15, 356359.CrossRefGoogle ScholarPubMed
Vidal, J. E., Hernandez, A. V., de Oliveira, A. C. P., Dauar, R. F., Barbosa, S. P. and Focaccia, R. (2005). Cerebral toxoplasmosis in HIV-positive patients in Brazil: clinical features and predictors of treatment response in the HAART era. AIDS Patient Care and STDs 19, 840848.CrossRefGoogle ScholarPubMed
Vidotto, O., Kano, F. S., Freire, R. L., Mitsuka, R., Ogawa, L., Bonesi, G., Navarro, I. T. and Franciscon, F. S. G. (1997). Ocorrência de anticorpos anti-Toxoplasma gondii em eqüinos procedentes de quatro estados (SP, PR, MS e MT) abatidos em Apucarana, PR. Semina: Ciências Agrárias, Londrina 18, 913.Google Scholar
Vidotto, O., Navarro, I. T., Giraldi, N., Mitsuka, R. and Freire, R. L. (1990). Estudos epidemiológicos da toxoplasmose em suínos da região de Londrina – PR. Semina Ciências Agrárias, Londrina 11, 5359.CrossRefGoogle Scholar
Villalobos, E. M. C., Felício, P. S., Lara, M. C. C. S. H., Cunha, E. M. S., Ogata, R. A. and Bersano, J. G. (2011). Frequência de anticorpos anti-Toxoplasma gondii em soros de suínos de propriedades rurais do estado de São Paulo, Brasil. Biológico, São Paulo 73, 129180.Google Scholar
Wainstein, M. V., Ferreira, L., Wolfenbuttel, L., Golbspan, L., Sprinz, E., Kronfeld, M. and Edelweiss, M. I. (1992). Achados neuropatológicos na síndrome da imunodeficiência adquirida (SIDA): revisão de 138 casos. Revista da Sociedade Brasileira de Medicina Tropical 25, 9599.CrossRefGoogle Scholar
Walls, K. W. and Kagan, I. G. (1967). Studies on the prevalence of antibodies to Toxoplasma gondii. 2. Brazil. American Journal of Epidemiology 86, 305313.CrossRefGoogle ScholarPubMed
Walls, K. W., Kagan, I. G. and Turner, A. (1967). Studies on the prevalence of antibodies to Toxoplasma gondii. 1. U.S. Military recruits. American Journal of Epidemiology 85, 8792.CrossRefGoogle ScholarPubMed
Wentz, I., Sobestiansky, J. and Chaplin, E. (1986). Prevalência de anticorpos para Toxoplasma gondii em soros de suínos pedigree em Santa Catarina. Pesquisa Agropecuária Brasileira 21, 441443.Google Scholar
Wilson, M., Remington, J. S., Clavet, C., Varney, G., Press, C., Ware, D., Herman, C. L., Shively, R. G., Simms, T. E., Hansen, S., Gaffey, C. M., Nutter, C. D., Langone, J. J., McCracken, J. and Staples, B. (1997). Evaluation of six commercial kits for detection of human immunoglobulin M antibodies to Toxoplasma gondii. Journal of Clinical Microbiology 35, 31123115.CrossRefGoogle ScholarPubMed
Wolf, A., Cowen, D. and Paige, B. (1939). Human toxoplasmosis: occurrence in infants as an encephalomyelitis verification by transmission to animals. Science 89, 226227.CrossRefGoogle ScholarPubMed
Yai, L. E. O., Ragozo, A. M. A., Aguiar, D. M., Damaceno, J. T., Oliveira, L. N., Dubey, J. P. and Gennari, S. M. (2008). Isolation of Toxoplasma gondii from capybaras (Hydrochaeris hydrochaeris) from São Paulo State, Brazil. Journal of Parasitology 94, 10601063.CrossRefGoogle ScholarPubMed
Yai, L. E. O., Ragozo, A. M. A., Soares, R. M., Pena, H. F. J., Su, C. and Gennari, S. M. (2009). Genetic diversity among capybara (Hydrochaeris hydrochaeris) isolates of Toxoplasma gondii from Brazil. Veterinary Parasitology 162, 332337.CrossRefGoogle ScholarPubMed
Yamamoto, J. H., Boletti, D. I., Nakashima, Y., Hirata, C. E. and Olivalves, E. (2003). Severe bilateral necrotising retinitis caused by Toxoplasma gondii in a patient with systemic lupus erythematosus and diabetes mellitus. British Journal of Ophthalmology 87, 651652.CrossRefGoogle Scholar
Zajdenweber, M., Muccioli, C. and Belfort, R. Jr. (2005). Acometimento ocular em pacientes com AIDS e toxoplasmose do sistema nervoso central – antes e depois do HAART. Arquivos Brasileiros de Oftalmologia 68, 773775.CrossRefGoogle Scholar
Zonta, J. C., Araujo, F. A. P., Stobbe, N. S., Chaplin, E. L. and Santos da Silva, N. R. (1987). Prevalência de anticorpos toxoplásmicos em ovinos de Marau e de Uruguaiana, RS. Arquivos da Faculdade de Veterinária UFRGS 15/16, 5961.Google Scholar
Figure 0

Fig. 1. Map of Brazil with 5 regions and distribution of human population, and sources of Toxoplasma gondii isolates genotyped. Figures in parenthesis are millions of people and % of the total population. State abbreviation—(population million, %): AC – Acre (0·7, 0·38%), AL – Alagoas (3·1, 1·64%), AM – Amazonas (3·4, 1·83%), AP – Amapá (0·6, 0·35%), BA – Bahia (14·0, 7·35%), CE – Ceará (8·4, 4·43%), DF – Distrito Federal (2·5,1·35%), ES – Espírito Santo (3·5, 1·84%), GO – Goiás (6·0, 3·15%), MA – Maranhão (6·5, 3·45%) MS – Mato Grosso do Sul (2·4, 1·28%) MG – Minas Gerais (19·5, 10·27%), MT – Mato Grosso (3·0, 1·59%) PA – Pará (7·5, 3·97%), PB – Paraíba (3·7, 1·97%), PE – Pernambuco (8·7, 4·61%), PI – Piauí (3·1, 1·63%), PR – Paraná (10·4, 5·48%), RN – Rio Grande do Norte (3·2, 1·66%), RJ – Rio de Janeiro (15·9, 8·38%), RO – Rondônia (1·5, 0·82%), RR – Roraima (0·4, 0·24%), RS – Rio Grande do Sul (10·6, 5·60%), SC – Santa Catarina (6·2, 3·28%) SE – Sergipe (2·0, 1·08%) SP – São Paulo (41·2, 21·63%) TO – Tocantins (1·3, 0·73%).

Figure 1

Table 1. Historical landmarks of Toxoplasma gondii and toxoplasmosis in Brazil

Figure 2

Table 2. Serological prevalence of Toxoplasma gondii in the general population in Brazil

Figure 3

Table 3. Serological prevalence of Toxoplasma gondii antibodies in children in Brazil

Figure 4

Table 4. Serological prevalence of Toxoplasma gondii in pregnant/delivering, or child-bearing aged women in Brazil

Figure 5

Table 5. Prevalence of congenital toxoplasmosis in Brazil

Figure 6

Table 6. Clinical toxoplasmosis in congenitally-infected children in Brazil

Figure 7

Table 7. Prevalence of Toxoplasma gondii antibodies in domestic cats in Brazil

Figure 8

Table 8. Serological prevalence of Toxoplasma gondii antibodies in free-range chickens from different states, counties or areas of Brazil

Figure 9

Table 9. Serological prevalence of Toxoplasma gondii antibodies in pigs in Brazil

Figure 10

Table 10. Isolation of viable Toxoplasma gondii from animals in Brazil

Figure 11

Table 11. Serological prevalence of Toxoplasma gondii antibodies in sheep in Brazil

Figure 12

Table 12. Serological prevalence of Toxoplasma gondii antibodies in goats in Brazil

Figure 13

Table 13. Serological prevalence of Toxoplasma gondii antibodies in miscellaneous domestic animals in Brazil

Figure 14

Table 14. Genotyping of 363 Toxoplasma gondii isolates from Brazil

Figure 15

Fig. 2. Pairwise Fst of six Toxoplasma gondii populations from different hosts from São Paulo state, Brazil. Comparison of the populations was conducted using Arlequin ver 3.5. Statistical significance is determined at P = 0·01. The ‘ + ’ sign indicates significant difference between two populations, whereas ‘ − ’ indicates insignificance. The heat map indicates the Fst value.

Figure 16

Table 15. Basic statistics of 6 Toxoplasma gondii populations from São Paulo state, Brazil

Supplementary material: File

Dubey supplementary table 1

Dubey supplementary table 1

Download Dubey supplementary table 1(File)
File 26.8 KB
Supplementary material: Image

Dubey supplementary figure

Dubey supplementary figure

Download Dubey supplementary figure(Image)
Image 228.6 KB
Supplementary material: File

Dubey supplementary table 2

Dubey supplementary table 2

Download Dubey supplementary table 2(File)
File 12.2 KB
Supplementary material: File

Dubey supplementary table 3

Dubey supplementary table 3

Download Dubey supplementary table 3(File)
File 16.2 KB
Supplementary material: File

Dubey supplementary table 4

Dubey supplementary table 4

Download Dubey supplementary table 4(File)
File 16.4 KB
Supplementary material: File

Dubey supplementary table 5

Dubey supplementary table 5

Download Dubey supplementary table 5(File)
File 31.7 KB
Supplementary material: File

Dubey supplementary table 6

Dubey supplementary table 6

Download Dubey supplementary table 6(File)
File 21.5 KB
Supplementary material: File

Dubey supplementary table 7

Dubey supplementary table 7

Download Dubey supplementary table 7(File)
File 148.5 KB
Supplementary material: File

Dubey supplementary table 8

Dubey supplementary table 8

Download Dubey supplementary table 8(File)
File 161.3 KB
Supplementary material: File

Dubey supplementary table 9

Dubey supplementary table 9

Download Dubey supplementary table 9(File)
File 40.4 KB