Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-28T05:20:10.891Z Has data issue: false hasContentIssue false

Ultrastructural evidence shows adaptation to a pelagic lifestyle in Ordovician caryocaridids (Crustacea: phyllocarida)

Published online by Cambridge University Press:  07 November 2024

Yilong Liu
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Ruo-ying Fan
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Xiaoqi Du
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Juan Ma
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
Jiayi Yin
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Rui-wen Zong*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
Yi-ming Gong
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
*
Corresponding author: Rui-wen Zong; Email: [email protected]

Abstract

Caryocaridids are a unique representative of pelagic arthropods from the Ordovician period. They are typically found as flattened carapaces in mudstones and shales. This study reports on a species of caryocaridids, Soomicaris cedarbergensis, discovered in the Lower Ordovician of northwestern Xinjiang, NW China. The species shows the rare enrolled carapaces with a preserved cuticular ultrastructure. These specimens of caryocaridids from Xinjiang are the first reported in the Yili Block, and provide the substantial evidence that the paleogeographic distribution of caryocaridid phyllocarids could extend to the Central Asian Orogenic Belt. This species existed from the late Tremadocian until the end of the Ordovician (Hirnantian), making it the longest-ranging known species of caryocaridids. The carapace cuticle of S. cedarbergensis is composed of carbonate-fluorapatite and can be divided into three mineralized lamellae: outer, middle, and inner. The outer and inner lamellae each consist of three layers that correspond to the epicuticle, exocuticle, and endocuticle of extant crustacean carapaces. Moreover, the polygonal reticulation structure of the carapace in archaeostracans appears to be similar in shape and size to the hemolymph sinuses of leptostracans. This unique ultrastructure of the carapace cuticle in caryocaridids is believed to be better suited for a pelagic lifestyle.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Literature Cited

Abdullaev, R. N., and Khaletskaya, O. N.. 1970. Nizhniy Paleozoy Chatkalskogo Khrebta: Trilobityi graptolity Ordovika Pskemskogo Khrebta [Lower Paleozoic of the Chatkalskiy Range: Trilobites and graptolites of the Ordovician of the Pskemskiy Range]. Izdatel'stvo FAN Uzbekskoy SSR Tashkent.Google Scholar
Barrande, J. 1872. Système Silurien du centre de la Bohème, Supplément au vol. 1. Praha, Paris.Google Scholar
Bate, R. H., and East, B. A.. 1972. The structure of the ostracode carapace. Lethaia 5:177194.CrossRefGoogle Scholar
Bate, R. H., and East, B. A.. 1975. The ultrastructure of the ostracode (Crustacea) integument. Bulletins of American Paleontology 65:529547.Google Scholar
Becker, G., and Adamczak, F. J.. 1990. Aurikirkbya wordensis (Hamilton): ein vermutlich filtrierender palaeocopider Ostracode. Paläontologische Zeitschrift 64:91102.CrossRefGoogle Scholar
Benson, R. H. 1975. Morphologic stability in Ostracoda. Bulletins of American Paleontology 65:1346.Google Scholar
Bouligand, Y. 1972. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue and Cell 4:189217.CrossRefGoogle ScholarPubMed
Broda, K., and Zatoń, M.. 2017. A set of possible sensory system preserved in cuticle of Late Devonian thylacocephalan arthropods from Poland. Historical Biology 29:10451055.CrossRefGoogle Scholar
Broda, K., Wolny, M., and Zatoń, M.. 2015. Palaeobiological significance of damaged and fragmented thylacocephalan carapaces from the Upper Devonian of Poland. Proceedings of the Geologists’ Association 126:589598.CrossRefGoogle Scholar
Broda, K., Rak, Š., and Hegna, T. A.. 2020. Do the clothes make the thylacocephalan? A detailed study of Concavicarididae and Protozoeidae (? Crustacea, Thylacocephala) carapace micro-ornamentation. Journal of Systematic Palaeontology 18:911930.CrossRefGoogle Scholar
Bulman, O. M. B. 1964. Lower Palaeozoic plankton. Quarterly Journal of the Geological Society 120:455476.CrossRefGoogle Scholar
[BGXUAR] Bureau of Geology of Xinjiang Uygur Autonomous Region. 1987a. Regional Geological Survey Report of Baskan Pass-Huocheng. Scale 1:200,000. Bureau of Geology of Xinjiang Uygur Autonomous Region, Urumqi.Google Scholar
[BGXUAR] Bureau of Geology of Xinjiang Uygur Autonomous Region. 1987b. Regional Geological Survey Report of Jinghe. Scale 1:200,000. Bureau of Geology of Xinjiang Uygur Autonomous Region, Urumqi.Google Scholar
[BGXUAR] Bureau of Geology of Xinjiang Uygur Autonomous Region. 1987c. Regional Geological Survey Report of Sailimu. Scale 1:200,000. Bureau of Geology of Xinjiang Uygur Autonomous Region, Urumqi.Google Scholar
Chapman, F. 1902. XII.—New or little-known Victorian fossils in the National Museum, Melbourne. Part I.—Some Paleozoic species. Royal Society of Victoria 16:104122.Google Scholar
Chapman, F. 1934. On some phyllocarids from the Ordovician of Preservation Inlet and Cape Providence, New Zealand. Transactions of the Royal Society of New Zealand 64:105–11.Google Scholar
Chen, X., Lin, H. L., Xu, H. K., and Zhou, Y. X.. 1998. Early Palaeozoic strata from northwest Xinjiang. Journal of Stratigraphy 22:241251.Google Scholar
Chlupáč, I. 1970. Phyllocarid crustaceans of the Bohemian Ordovician. Sborník geologických věd, Paleontologie 12:4177.Google Scholar
Chlupáč, I. 2003. Phyllocarid crustaceans from the Middle Ordovician Šárka Formation at Praha–Vokovice. Bulletin of Geosciences 78:107111.Google Scholar
Churkin, M. Jr. 1966. Morphology and stratigraphic range of the phyllocarid crustacean Caryocaris from Alaska and the Great Basin. Palaeontology 9:371380.Google Scholar
Collette, J. H., and Hagadorn, J. W.. 2010. Early evolution of phyllocarid arthropods: phylogeny and systematics of Cambrian–Devonian archaeostracans. Journal of Paleontology 84:795820.CrossRefGoogle Scholar
Copeland, M. J. 1967. An occurrence of Caryocaris (Crustacea, Phyllocarida) from the Canadian Arctic. Journal of Paleontology 41:11931194.Google Scholar
Dillaman, R., Roer, R., Shafer, T., and Modla, S.. 2013. The crustacean integument: structure and function. Pp. 140166 in Thiel, M. and Watling, L., eds. The natural history of Crustacea. Vol. I, Functional morphology and diversity. Oxford University Press, New York.CrossRefGoogle Scholar
Freiberger, O. N. 1947. O nakhodke rakoobraznogo Caryocaris curvikata Gurley v ordovike yugo-vostochnogo Kapa-tay (On the discovery of the crustacean Caryocaris curvikata Gurley in the Ordovician of the southeastern Kapa-Tay). Doklady Academii Nauk SSSR 58:1155.Google Scholar
Gensel, P. G., Johnson, N. G., and Strother, P. K.. 1990. Early land plant debris (Hooker's “waifs and strays”?). Palaios 5:520547.CrossRefGoogle Scholar
Green, J. P., and Neff, M. R.. 1972. A survey of the fine structure of the integument of the fiddler crab. Tissue and Cell 4:137171.CrossRefGoogle ScholarPubMed
Haj, A. E., and Feldmann, R. M.. 2002. Functional morphology and taxonomic significance of a novel cuticular structure in Cretaceous raninid crabs (Decapoda: Brachyura: Raninidae). Journal of Paleontology 76:472485.2.0.CO;2>CrossRefGoogle Scholar
Horne, D. J., Cohen, A., and Martens, K.. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. Geophysical Monograph 131:535.Google Scholar
Jell, P. A. 1980. Two arthropods from the Lancefieldian (La 1) of central Victoria. Alcheringa 4:3746.CrossRefGoogle Scholar
Kovář, V., Šilinger, M., Fatka, O., and Brocke, R.. 2024. Chemical processing of fossil phyllocarid cuticle: a comparison of micro- and macrofossil remains. Palynology 48:18.CrossRefGoogle Scholar
Li, Y. T. 1995. Early Palaeozoic stratigraphy and sedimentary facies in the Bolhinur Mountain region of western Middle Tianshan in Xinjiang. Journal of the University of Petroleum 19:1824.Google Scholar
Li, M., Wang, W. H., and Feng, H. Z.. 2018. Tremadoc graptolite biozonation of South China and its global correlation. Acta Geologica Sinica 57:444459.Google Scholar
Liu, Y. L., Fan, R. Y., Zong, R. W., and Gong, Y. M.. 2022. The evolution and initial rise of pelagic caryocaridids in the Ordovician. Earth-Science Reviews 231:104097.CrossRefGoogle Scholar
Liu, Y. L., Fan, R. Y., Zong, R. W., and Gong, Y. M.. 2023. First occurrence of caryocaridids (Crustacea, Phyllocarida) in the Ordovician of North China. Palaeogeography, Palaeoclimatology, Palaeoecology 623:111638.CrossRefGoogle Scholar
Manton, S. M. 1934. V. On the embryology of the crustacean Nebalia bipes. Philosophical Transactions of the Royal Society B 223:163238.Google Scholar
Miranda, J. A. 2002. Origin and formation of Ordovician sedimentary phosphates at Phosphate Hill, Mansfield. B.S. thesis. University of Melbourne, Melbourne.Google Scholar
Möberg, J. C., and Segerberg, O.. 1906. Bidrag till kännedomen om Ceratopygeregionen med sörskild hänsyn till dess utveckling i Fogelsångstrakten. Meddelande frän Lunds Geologiska Fältklubb B 2:1113.Google Scholar
Newman, W. A., and Knight, M. D.. 1984. The carapace and crustacean evolution—a rebuttal. Journal of Crustacean Biology 4:682687.CrossRefGoogle Scholar
Nikitina, O. I., Popov, L. E., Neuman, R. B., Bassett, M. G., and Holmer, L. E.. 2006. Mid Ordovician (Darriwilian) brachiopods of South Kazakhstan. Pp. 145222 in Bassett, M. G. and Deisler, V. K., eds. Studies in Palaeozoic palaeontology. National Museum of Wales Geological Series 25. National Museum of Wales, Cardiff.Google Scholar
Obut, A. I., and Zuvtsov, E. N.. 1965. Stratigrafiya i graptolity ordovika gornogo obramleniya Narynskoy vpadiny [Ordovician stratigraphy and graptolites from the mountains framing the Naryn Depression]. Pp. 1332. in Sokolov, V. S. ed. Stratigrafiya i paleontologiya paleozoya Aziatskoy chasti SSSR [Stratigraphy and paleontology of the Paleozoic Asian part of the USSR] Nauka, Moskva.Google Scholar
Okada, Y. 1982a. Ultrastructure and pattern of the carapace of Bicornucythere bisanensis (Ostracoda, Crustacea). Bulletin of the University Museum, University of Tokyo 20:229255.Google Scholar
Okada, Y. 1982b. Structure and cuticle formation of the reticulated carapace of the ostracode Bicornucythere bisanensis. Lethaia 15:85101.CrossRefGoogle Scholar
Olempska, E. 2001. Palaeozoic roots of the sigilliid ostracods. Marine Micropaleontology 41:109123.CrossRefGoogle Scholar
Olempska, E. 2008. Soft body-related features of the carapace and the lifestyle of Paleozoic beyrichioidean ostracodes. Journal of Paleontology 82:717736.CrossRefGoogle Scholar
Olesen, J. 2013. The crustacean carapace: morphology, function, development, and phylogenetic history. Pp. 103139 in Thiel, M. and Watling, L., eds. The natural history of Crustacea. Vol. I, Functional morphology and diversity. Oxford University Press, New York.CrossRefGoogle Scholar
Olesen, J., and Walossek, D.. 2000. Limb ontogeny and trunk segmentation in Nebalia species (Crustacea, Malacostraca, Leptostraca). Zoomorphology 120:4764.CrossRefGoogle Scholar
Perrier, V., Williams, M., and Siveter, D. J.. 2015. The fossil record and palaeoenvironmental significance of marine arthropod zooplankton. Earth-Science Reviews 146:146162.CrossRefGoogle Scholar
Pillola, G. L., Piras, S., and Serpagli, E.. 2008. Upper Tremadoc–Lower Arenig? Anisograptid–Dichograptid fauna from the Cabitza Formation (Lower Ordovician, SW Sardinia, Italy). Revue de micropaléontologie 51:167181.CrossRefGoogle Scholar
Pütz, K., and Buchholz, F.. 1991. Comparative ultrastructure of the cuticle of some pelagic, nektobenthic and benthic malacostracan crustaceans. Marine Biology 110:4958.CrossRefGoogle Scholar
Qiao, X. D. 1989. On graptolite-bearing strata and the graptolite fauna division of Ordovician in the western North Tianshan. Xinjiang Geology 7:8190.Google Scholar
Racheboeuf, P. R., and Crasquin, S.. 2010. The Ordovician caryocaridid phyllocarids (Crustacea): diversity and evolutionary tendencies. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 257:237248.CrossRefGoogle Scholar
Racheboeuf, P. R., Vannier, J., and Ortega, G.. 2000. Ordovician phyllocarids (Arthropoda; Crustacea) from Argentina. Paläontologische Zeitschrift 74:317333.CrossRefGoogle Scholar
Racheboeuf, P. R., Crasquin, S., and Brussa, E.. 2009. South American Ordovician phyllocarids (Crustacea, Malacostraca). Bulletin of Geosciences 84:377408.CrossRefGoogle Scholar
Roer, R., and Dillaman, R.. 1984. The structure and calcification of the crustacean cuticle. American Zoologist 24:893909.CrossRefGoogle Scholar
Roer, R., Abehsera, S., and Sagi, A.. 2015. Exoskeletons across the Pancrustacea: comparative morphology, physiology, biochemistry and genetics. Integrative and Comparative Biology 55:771791.CrossRefGoogle ScholarPubMed
Rolfe, W. D. I. 1962. The cuticle of some middle Silurian ceratiocaridid crustacea from Scotland. Palaeontology 5:3051.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida. Pp. 296331 in Brooks, H. K., Carpenter, F. M., Glaessner, M. F., Hahn, G., Hessler, R. R., Hoffman, R. L., Holthuis, L. B., et al., eds. Treatise on Invertebrate Paleontology, Arthropoda 4(1). Part R. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Rolfe, W. D. I. 1981. Phyllocarida and the origin of Malacostraca. Geobios 14:1727.CrossRefGoogle Scholar
Ruedemann, R. 1934. Paleozoic plankton of North America. Geological Society of America Memoir 2:1141.CrossRefGoogle Scholar
Rushton, A. W. A., and Ingham, J. K.. 2000. Scotland: the Highland Border Complex and Grampian terrane. In Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parkes, M.A., Rushton, A. W. A., and Woodcock, N. H., eds. A revised correlation of Ordovician rocks in the British Isles. Geological Society of London Special Report 24:4849.Google Scholar
Rushton, A. W. A., and Williams, M.. 1996. The tail-piece of the crustacean Caryocaris wrightii from the Arenig rocks of England and Ireland. Irish Journal of Earth Sciences 15:107111.Google Scholar
Salter, J. W. 1860. XV.—On new fossil crustacea from the Silurian rocks. Annals and Magazine of Natural History 5:153162.CrossRefGoogle Scholar
Schram, F. R., and Hof, C. H. J.. 1998. Fossils and the interrelationships of major crustacean groups. Pp. 233302 in Edgecombe, G. D., ed. Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Sepkoski, J. J. 2000. Crustacean biodiversity through the marine fossil record. Contributions to Zoology 69:213222.CrossRefGoogle Scholar
Servais, T., Lehnert, O., Li, J., Mullins, G. L., Munnecke, A., Nützel, A., Vecoli, M.. 2008. The Ordovician biodiversification: revolution in the oceanic trophic chain. Lethaia 41:99109.CrossRefGoogle Scholar
Servais, T., Perrier, V., Danelian, T., Klug, C., Martin, R., Munnecke, A., Nowak, H., et al. 2016. The onset of the “Ordovician Plankton Revolution” in the late Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 458:1228.CrossRefGoogle Scholar
Shen, Y. B. 1986. Caryocaris from the Lower Ordovician of Jiangshan, Zhejiang, China. Science Bulletin 31:765769.Google Scholar
Šilinger, M. 2023. Stavba a složení exoskeletů vybraných skupin členovců pražské pánve (Exoskeletal structure and composition in selected arthropod groups of the Prague Basin). M.S. thesis. Univerzita Karlova, Praha.Google Scholar
Sohn, I. G., and Kornicker, L. S.. 1988. Ultrastructure of Myodocopid shells (Ostracoda). Pp. 243258 in Hanai, T. and Ishizaki, K., eds. Evolutionary biology of Ostracoda, its fundamentals and applications. Kodansha, Tokyo.Google Scholar
Spears, T., and Abele, L. G.. 1999. Phylogenetic relationships of crustaceans with foliaceous limbs: an 18S rDNA study of Branchiopoda, Cephalocarida and Phyllocarida. Journal of Crustacean Biology 19:825843.CrossRefGoogle Scholar
Størmer, L. 1937. Planktonic crustaceans from the Lower Didymograptus shale (3b) of Oslo. Norsk geologisk tidsskrift 16:267278.Google Scholar
Størmer, L. E. I. F. 1935. Dictyocaris, Salter, a large crustacean from the Upper Silurian and Downtonian. Norsk geologisk tidsskrift 15:267298.Google Scholar
Talbot, P., Clark, W. H. Jr., and Lawrence, A. L.. 1972. Ultrastructural observations of the muscle insertion and modified branchiostegite epidermis in the larval brown shrimp, Penaeus aztecus. Tissue and Cell 4:613628.CrossRefGoogle ScholarPubMed
Tolmacheva, T. Y., Holmer, L., Popov, L., and Gogin, I.. 2004. Conodont biostratigraphy and faunal assemblages in radiolarian ribbon-banded cherts of the Burubaital Formation, West Balkhash Region, Kazakhstan. Geological Magazine 141:699715.CrossRefGoogle Scholar
Tolmacheva, T. J., Degtyarev, K. E., Samuelsson, J., and Holmer, L. E.. 2008. Middle Cambrian to Lower Ordovician faunas from the Chingiz Mountain Range, central Kazakhstan. Alcheringa 32:443463.CrossRefGoogle Scholar
Tolmacheva, T. Y., Degtyarev, K. E., and Ryazantsev, A. V.. 2021. Ordovician conodont biostratigraphy, diversity and biogeography in deep-water radiolarian cherts from Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology 578:110572.CrossRefGoogle Scholar
Vannier, J., and Abe, K.. 1995. Size, body plan and respiration in the Ostracoda. Palaeontology 38:843873.Google Scholar
Vannier, J., Boissy, P., and Racheboeuf, P. R.. 1997a. Locomotion in Nebalia bipes: a possible model for Palaeozoic phyllocarid crustaceans. Lethaia 30:89104.CrossRefGoogle Scholar
Vannier, J., Williams, M., and Siveter, D. J.. 1997b. The Cambrian origin of the circulatory system of crustaceans. Lethaia 30:169184.CrossRefGoogle Scholar
Vannier, J., Wang, S. Q., and Coen, M.. 2001. Leperditicopid arthropods (Ordovician–Late Devonian): functional morphology and ecological range. Journal of Paleontology 75:7595.2.0.CO;2>CrossRefGoogle Scholar
Vannier, J., Racheboeuf, P. R., Brussa, E. D., Williams, M., Rushton, A. W., Servais, T., and Siveter, D.J.. 2003. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeography, Palaeoclimatology, Palaeoecology 195:173191.CrossRefGoogle Scholar
Vannier, J., Caron, J. B., Yuan, J. L., Briggs, D. E., Collins, D., Zhao, Y. L.,, and Zhu, M. Y.. 2007. Tuzoia: morphology and lifestyle of a large bivalved arthropod of the Cambrian seas. Journal of Paleontology 81:445471.CrossRefGoogle Scholar
Vega, F. J., Dávila-Alcocer, V. M., and Filkorn, H. F.. 2005. Characterization of cuticle structure in Late Cretaceous and Early Tertiary decapod crustacea from Mexico. Bulletin of the Mizunami Fossil Museum 32:3743.Google Scholar
Wang, J., Hua, H., Wang, X., Gu, P. Y., Chen, R. M., Zhuang, Y. J., He, S. P., and Li, Y. H.. 2019. Ziyang fauna: a slope facies fossil Lagerstätte of Early Ordovician in South China. Chinese Science Bulletin 64:23422350.Google Scholar
Whittle, R. J., Gabbott, S. E., Aldridge, R. J., and Theron, J. N.. 2007. Taphonomy and palaeocology of a Late Ordovician caryocaridid (Crustacea, Phyllocarida) from the Soom Shale Lagerstätte, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 251:383397.CrossRefGoogle Scholar
Wirkner, C. S., and Richter, S.. 2013. Circulatory system and respiration. Pp. 376412 in Thiel, M. and Watling, L., eds. The natural history of Crustacea. Vol. I, Functional morphology and diversity. Oxford University Press, New York.CrossRefGoogle Scholar
Woodward, H. 1912. Note on a new species of Caryocaris (C. kilbridensis) from the Arenig rocks of the Kilbride Peninsula. Quarterly Journal of the Geological Society of London 68:99101.Google Scholar
[XBGMR] Xinjiang Bureau of Geology and Mineral Resources. 1993. Regional geology of Xinjiang Uygur Autonomy Region. Geology Publishing House, Beijing.Google Scholar
[XBGMR] Xinjiang Bureau of Geology and Mineral Resources. 1999. Lithostratigraphy of Xinjiang Uygur Autonomous Region. China University of Geosciences Press, Wuhan.Google Scholar
Xiang, W. L., and Zhang, T. R.. 1984. Tremadocian trilobites from western part of Northern Tianshan, Xinjiang. Acta Palaeontologica Sinica 23:399410.Google Scholar
Xu, J., and Huang, Z. G.. 1979. Lower Ordovician graptolite fauna of Guozigou area, Hocheng, Xinjiang. Acta Geologica Sinica 53:119.Google Scholar
Yamada, S. 2007. Ultrastructure of the carapace margin in the Ostracoda (Arthropoda: Crustacea). Hydrobiologia 585:201211.CrossRefGoogle Scholar
Yamada, S. 2019. Ultrastructure and cuticle formation of the carapace in the myodocopan ostracod exemplified by Euphilomedes japonica (Crustacea: Ostracoda). Journal of Morphology 280:809826.CrossRefGoogle ScholarPubMed
Yamada, S., and Keyser, D.. 2010. Calcification of the marginal infold in podocopid ostracods. Hydrobiologia 638:213222.CrossRefGoogle Scholar
Yamada, S., Tsukagoshi, A., and Ikeya, N.. 2004. Ultrastructure of the carapace in some Semicytherura species (Ostracoda: Crustacea). Micropaleontology 50:381389.CrossRefGoogle Scholar
Zatoń, M., Filipiak, P., Rakociński, M., and Krawczyński, W.. 2014. Kowala Lagerstätte: Late Devonian arthropods and non-biomineralized algae from Poland. Lethaia 47:352364.CrossRefGoogle Scholar
Zhang, T. R. 1987. New finding of trilobites Tremadocian Sairam Formation from Bolhinur mountain, Xinjiang. Xinjiang Geology 5:6270.Google Scholar
Zhang, S. P. 2010. Tectonic evolution and lithofacies paleogeography of the early Paleozoic in the West Tianshan of Yili. M.S. thesis. Northwestern University, Xi'an.Google Scholar
Zhang, Y. D., Erdtmann, B. D., and Feng, H. Z.. 2004. Tremadocian (Early Ordovician) graptolite biostratigraphy of China. Newsletters on Stratigraphy 40:155182.CrossRefGoogle Scholar
Zhang, Y. D., Wang, Z. H., Feng, H. Z., Luo, T. T., and Erdtmann, B. D.. 2005. Tremadocian (Ordovician) graptolite biostratigraphy of China: a review. Journal of Stratigraphy 29:215–135.Google Scholar