Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-27T15:14:55.879Z Has data issue: false hasContentIssue false

Quantifying the rise of animals during the Ediacaran–Cambrian using ichnodissimilarity

Published online by Cambridge University Press:  10 December 2024

Zekun Wang*
Affiliation:
Natural History Museum, London SW7 5BD, U.K.
Imran A. Rahman
Affiliation:
Natural History Museum, London SW7 5BD, U.K. Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, U.K.
Li-Jun Zhang
Affiliation:
Institute of Resources and Environment, Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Polytechnic University, Jiaozuo, China
*
Corresponding author: Zekun Wang; Email: [email protected]

Abstract

The trace fossil record provides important insights into the evolution of early animals during the Ediacaran/Cambrian transition, with changes in ichnodiversity through time and between environments informing on the diversification of major body plans, behaviors, and niches. To quantify variation in the diversity of trace fossils across this critical interval, we propose a measure of trace fossil dissimilarity (ichnodissimilarity) based on vector calculation. Furthermore, by comparing discrepancies between the angular bisector and mean vector of two sets of vectorized fossil data, we are able to weigh the relative contribution of increases and decreases in the variation of occurrences of taxa. We used this metric to analyze an expansive dataset of Ediacaran/Cambrian trace fossils. The results allowed us to quantify the diversification of traces across this transition, informing on the timing of first appearance of different behaviors (e.g., foraging, grazing, and resting) and functional groups. By interpreting the results in the context of environmental changes and advancements in motility and sensory capabilities, we were able to pinpoint the onset and sequence of the Fortunian diversification event, Cambrian information revolution, and agronomic revolution, shedding light on the evolution of organismal body plans, behaviors, and locomotion during the Ediacaran/Cambrian transition. We identified two phases of origination and expansion during the divergence of early animal traces. Furthermore, by analyzing shallow- and deep-marine trace fossils, we were able to uncover evidence for a more rapid diversification of traces in shallow-marine environments, with progressive niche partitioning through the Ediacaran to Cambrian.

Type
Featured Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Literature Cited

Alpert, S. 1973. Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. Journal of Paleontology 47:919924.Google Scholar
Antcliffe, J. B, Callow, R. H. T., and Brasier, M. D.. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews of the Cambridge Philosophical Society 89:9721004.CrossRefGoogle ScholarPubMed
Artime, O., and De Domenico, M.. 2022. From the origin of life to pandemics: emergent phenomena in complex systems. Philosophical Transactions of the Royal Society A 380:20200410.CrossRefGoogle ScholarPubMed
Beck, J., Holloway, J. D., Schwanghart, W., and Orme, D.. 2013. Undersampling and the measurement of beta diversity. Methods in Ecology and Evolution 4:370382.CrossRefGoogle Scholar
Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M., and Sperling, E. A.. 2018. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proceedings of the Royal Society B 285:20181724.CrossRefGoogle ScholarPubMed
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q.. 2000. The Cambrian Substrate evolution. GSA Today 10:18.Google Scholar
Buatois, L. A. 2018. Treptichnus pedum and the Ediacaran–Cambrian boundary: significance and caveats. Geological Magazine 155:174180.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G.. 2003. Early colonization of the deep sea: ichnologic evidence of deep-marine benthic ecology from the Early Cambrian of northwest Argentina. Palaios 18:572581.2.0.CO;2>CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G.. 2004. Terminal Proterozoic–Early Cambrian ecosystems: ichnology of the Puncoviscana Formation, northwest Argentina. Fossils and Strata 51:116.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G.. 2016. Recurrent patterns and processes: the significance of ichnology in evolutionary paleoecology. Pp. 449473 in Mángano, M. G. and Buatois, L. A., eds. The trace-fossil record of major evolutionary events. Topics in Geobiology. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G.. 2018. The other biodiversity record: innovations in animal-substrate interactions through geologic time. GSA Today 28:410.CrossRefGoogle Scholar
Buatois, L. A., Narbonne, G. M., Mángano, M. G., Carmona, N. B., and Myrow, P.. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5:3544.CrossRefGoogle ScholarPubMed
Buatois, L. A., Almond, J., Mángano, M. G., Jensen, S., and Germs, G. J. B.. 2018. Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion. Scientific Reports 8:4514.CrossRefGoogle ScholarPubMed
Buatois, L. A., Mángano, M. G., Minter, N. J., Zhou, K., Wisshak, M., Wilson, M. A., and Olea, R. A.. 2020. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic—the role of bioturbation and bioerosion. Science Advances 6:eabb0618.CrossRefGoogle ScholarPubMed
Budd, G. E., and Jensen, S.. 2015. The origin of the animals and a “Savannah” hypothesis for early bilaterian evolution. Biological Reviews 92:446–73.CrossRefGoogle Scholar
Bush, A. M., Wang, S.C., Payne, J. L., and Heim, N. A.. 2019. A framework for the integrated analysis of the magnitude, selectivity, and biotic effects of extinction and origination. Paleobiology 46:122.CrossRefGoogle Scholar
Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T.. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8:148159.CrossRefGoogle Scholar
Cheeyham, A. H., and Hazel, J. E.. 1969. Binary (presence-absence) similarity coefficient. Journal of Paleontology 43:11301136.Google Scholar
Chen, Z., Chen, X., Zhou, C. M., Yuan, X. L., and Xiao, S. H.. 2018. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Science Advances 4:eaao6691.CrossRefGoogle ScholarPubMed
Chen, Z., Zhou, C. M., Yuan, X. L., and Xiao, S. H.. 2019. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573:412415.CrossRefGoogle ScholarPubMed
Conde, A., and Domínguez, J.. 2018. Scaling the chord and Hellinger distances in the range [0,1]: an option to consider. Journal of Asia-Pacific Biodiversity 11:161166.CrossRefGoogle Scholar
Cribb, A. T., Kenchington, C. G., Koester, B., Gibson, B. M., Boag, T. H., Racicot, R. A., Mocke, H., Laflamme, M., and Darroch, S. A. F.. 2019. Increase in metazoan ecosystem engineering prior to the Ediacaran–Cambrian boundary in the Nama Group, Namibia. Royal Society Open Science 6:190548.CrossRefGoogle Scholar
Cribb, A. T., van de Velde, S. J., Berelson, W. M., Bottjer, D. J., and Corsetti, F. A.. 2023. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. Geobiology 21:435453.CrossRefGoogle Scholar
Crimes, T. P., and Fedonkin, M. A.. 1994. Evolution and dispersal of deepsea traces. Palaios 9:7483.CrossRefGoogle Scholar
Curran, H. A., and Glumac, B.. 2022. Dactyloidites ottoi (Geinitz, 1849) in Bahamian Pleistocene carbonates: a shallowest-marine indicator. Geological Society of London Special Publication 522:3535.Google Scholar
Darroch, S. A. F., Cribb, A. T., Buatois, L. A., Germs, G. J. B., Kenchington, C. G., Smith, E. F., Mocke, H., et al. 2021. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Science Reviews 212:103435.CrossRefGoogle Scholar
Eden, R., Manica, A., and Mitchel, E. G.. 2022. Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period. PLoS Biology 20:e3001289.CrossRefGoogle ScholarPubMed
Erwin, D. H., and Tweedt, S.. 2012. Ecological drivers of the Ediacaran–Cambrian diversification of Metazoa. Evolutionary Ecology 26:417–33.CrossRefGoogle Scholar
Evans, S. D., Tu, C., Rizzo, A., Surprenant, R. L., Boan, P. C., McCandless, H., Marshall, N., Xiao, S., and Droser, M. L.. 2022. Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition. Proceedings of the National Academy of Sciences USA 119:e2207475119.CrossRefGoogle ScholarPubMed
Fan, J. X., Shen, S. Z., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q.-m., Hou, X.-d., et al. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367:272277.CrossRefGoogle ScholarPubMed
Finnegan, S., Gehling, G., and Droser, M. L.. 2019. Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages. Paleobiology 45:235245.CrossRefGoogle Scholar
Francois, F., Gerino, M., Stora, G., Durbec, J. P., and Poggiale, J. C.. 2002. A functional approach to sediment reworking by gallery-forming macrobenthic organisms: modelling and application with the polychaete Nereis diversicolor. Marine Ecology Progress Series 229:127136.CrossRefGoogle Scholar
Gehling, J. G., Runnegar, B. N., and Droser, M. L.. 2014. Scratch traces of large Ediacara bilaterian animals. Journal of Paleontology 88:284298.CrossRefGoogle Scholar
Gougeon, R., Néraudeau, D., Dabard, M., Pierson-Wickmann, A., Polette, F., Poujol, M., and Saint-Martin, J.. 2018a. Trace fossils from the Brioverian (Ediacaran–Fortunian) in Brittany (NW France). Ichnos 25:1124.CrossRefGoogle Scholar
Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M., and Laing, B. A.. 2018b. Early Cambrian origin of the shelf sediment mixed layer. Nature Communications 9:1909.CrossRefGoogle ScholarPubMed
Hammersburg, S. R., Hasiotis, S. T., and Robison, R. A.. 2018. Ichnotaxonomy of the Cambrian Spence Shale Member of the Langston Formation, Wellsville Mountains, northern Utah, USA. Paleontological Contributions 20:166.Google Scholar
Herringshaw, L. G., Callow, R. H. T., and McIlroy, D.. 2017. Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers. Geological Society of London Special Publication 448:369382.CrossRefGoogle Scholar
Hofmann, R., Mángano, M. G., Elicki, O., and Shinaq, R.. 2012. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. Journal of Paleontology 86:931955.CrossRefGoogle Scholar
Horn, H. S. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist 100:419424.CrossRefGoogle Scholar
Hsieh, S., Plotnick, R. E., and Bush, A. M.. 2022. The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas. Paleobiology 48:397419.CrossRefGoogle Scholar
Ichaso, A., Buatois, L. A., Mángano, M. G., Thomas, P., and Marion, D.. 2022. Assessing the expansion of the Cambrian Agronomic Revolution into fan-delta environments. Scientific Reports 12:14431.CrossRefGoogle ScholarPubMed
James, N. P., Kobluk, D. R., and Pemberton, S. G.. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science 197:980983.CrossRefGoogle ScholarPubMed
Jensen, S., and Mens, K.. 2001. Trace fossils Didymaulichnus cf. tirasesnsis Monomorphichnusisp. from the Estonian Lower Cambrian, with a discussion on the early Cambrian ichnocoenoses of Baltica. Proceedings of the Estonian Academy of Sciences, Geology 50:7585.CrossRefGoogle Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:2427–39.CrossRefGoogle ScholarPubMed
Kaur, R., Singh, B. P., Bhargava, O. N., Mikuláš, R., Singla, G., Prasad, S. K., and Stopden, S.. 2021. Ichnology and biostratigraphic significance of Cambrian trace fossils from the lowest stratigraphic level of Kunzam La Formation, Chandra Valley, Lahaul and Spiti, India. Ichnos 28:176207.CrossRefGoogle Scholar
Knaust, D. 2013. The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution. Earth-Science Reviews 126:147.CrossRefGoogle Scholar
Knaust, D. 2018. The ichnogenus Teichichnus Seilacher, 1955. Earth-Science Reviews 177:386403.CrossRefGoogle Scholar
Knaust, D., and Neumann, C.. 2016. Asteriacites von Schlotheim, 1820—the oldest valid ichnogenus name—and other asterozoan-produced trace fossils. Earth-Science Reviews 157:111120.CrossRefGoogle Scholar
Kwak, S. G., and Kim, J. H.. 2017. Central limit theorem: the cornerstone of modern statistics. Korean Journal of Anesthesiolog 70:144156.CrossRefGoogle ScholarPubMed
Li, C., Shi, W., Cheng, M., Jin, C., and Algeo, T. J.. 2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Science Bulletin 65:21412149.CrossRefGoogle ScholarPubMed
Luo, C., and Miao, L. Y.. 2020. A Horodyskia-Nenoxites-dominated fossil assemblage from the Ediacaran–Cambrian transition (Liuchapo Formation, Hunan Province): its paleontological implications and stratigraphic potential. Palaeogeography, Palaeoclimatology, Palaeoecology 545:109635.CrossRefGoogle Scholar
Mángano, M. G., and Buatois, L. A.. 2014. Decoupling. Proceedings of the Royal Society B 281:20140038.CrossRefGoogle ScholarPubMed
Mángano, M. G., and Buatois, L. A.. 2016. The trace-fossil record of major evolutionary events. Topics in Geobiology. Springer, Dordrecht, Netherlands.Google Scholar
Mángano, M. G., and Buatois, L. A.. 2020. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 10:20190103.CrossRefGoogle ScholarPubMed
McArthur, R. H., Recher, H., and Cody, M.. 1966. On the relation between habitat selection and species diversity. American Naturalist 100:319332.CrossRefGoogle Scholar
McIlroy, D. 2017. Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. Geological Society of London Special Publication 448:351368.CrossRefGoogle Scholar
Mitchell, E. G., Evans, S. D., Chen, Z., and Xiao, S.. 2022. A new approach for investigating spatial relationships of ichnofossils: a case study of Ediacaran–Cambrian animal traces. Paleobiology 48:557575.CrossRefGoogle Scholar
Mitchell, E. G, Bobkov, N., Bykova, N., Dhungana, A., Kolesnikov, A. V., Hogarth, I. R. P., Liu, A. G., et al. 2020. The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 10:20190109.CrossRefGoogle ScholarPubMed
Morgan, C. A., Henderson, C., and Pratt, B.. 2019. A giant Protopaleodictyon from the Middle Cambrian of western Canada. Ichnos 26:216223.CrossRefGoogle Scholar
Na, L., and Kiessling, W.. 2015. Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences USA 112:47024706.CrossRefGoogle ScholarPubMed
Orloci, L. 1967. An agglomerative method for classification of plant communities. Journal of Ecology 55:193206.CrossRefGoogle Scholar
Pandey, D. K., Uchman, A., Kumar, V., and Shekhawat, R. S.. 2014. Cambrian trace fossils of the Cruziana ichnofacies from the Bikaner-Nagaur Basin, north western Indian Craton. Journal of Asian Earth Sciences 81:129141.CrossRefGoogle Scholar
Peters, J. A. 1968. A computer program for calculating degree of biogeographical resemblance between areas. Systematic Zoology 17:6469.CrossRefGoogle Scholar
Pickerill, R. K., and Keppie, J. D.. 1981. Observations on the ichnology of the Meguma Group (?Cambro–Ordovician) of Nova Scotia. Maritime Sediments and Atlantic Geology 17:130138.Google Scholar
Plotnick, R. E., Dornbos, S. Q., and Chen, J. Y.. 2010. Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology 36:303–17.CrossRefGoogle Scholar
Ricotta, C. 2017. Of beta diversity, variance, evenness, and dissimilarity. Ecology and Evolution 7:4835–43.CrossRefGoogle ScholarPubMed
Roy, A. B., and Purohit, R.. 2018. Palaeozoic geological history. Pp. 635646. In Purohit, R. and Roy, A. B., eds. Indian Shield: Precambrian evolution and Phanerozoic reconstitution. Elsevier, India.Google Scholar
Seilacher, A., and Hagadorn, J. W.. 2010. Early molluscan evolution: evidence from the trace fossil record. Palaios 25:565575.CrossRefGoogle Scholar
Seilacher, A., and Pflüger, F.. 1994. From biomats to benthic agriculture: a biohistoric revolution. Pp. 97105 in Krumbein, W. E., Peterson, D. M., and Stal, L. J., eds. Biostabilization of sediments. Bibliotheks-und Informationssystem der Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.Google Scholar
Seilacher, A., Buatois, L. A., and Mángano, M. G.. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavior diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227:323356.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society B 353:315326.CrossRefGoogle ScholarPubMed
Solan, M., and Wigham, B. D.. 2005. Biogenic particle reworking and bacterial-invertebrate interactions in marine sediments. In Kristensen, E., Haese, R. R., and Kostka, J. E., eds. Macro- and micro-organisms in marine sediments. Coastal and Estuarine Studies 60:105204. American Geophysical Union, Washington, D.C.Google Scholar
Tarhan, L. G. 2018. The early Paleozoic development of bioturbation—evolutionary and geobiological consequences. Earth-Science Reviews 178:177207.CrossRefGoogle Scholar
Turk, K. A., Maloney, K. M., Laflamme, M., and Darroch, S. A. F.. 2022. Paleontology and ichnology of the late Ediacaran Nasep–Huns transition (Nama Group, southern Namibia). Journal of Paleontology 96:753769.CrossRefGoogle Scholar
Wang, Z. K., and Rahman, I.. 2023. Quantitative ichnology: a novel framework to determine the producers of locomotory trace fossils—the ichnogenus Gordia as a case study. Palaeontology 66:e12686.CrossRefGoogle Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia 3:79109.CrossRefGoogle Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.CrossRefGoogle Scholar
Wilson, T. L., Rayburn, A. P., and Jr Edwards, T. C.. 2012. Spatial ecology of refuge selection by an herbivore under risk of predation. Ecosphere 3:118.CrossRefGoogle Scholar
Zamora, S., Deline, B., Álvaro, J. J, and Rahman, I. A.. 2017. The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. Earth-Science Reviews 171:478491.CrossRefGoogle Scholar
Zhang, X. L., and Shu, D. G.. 2021. Current understanding on the Cambrian Explosion: questions and answers. palZ 95:641660.CrossRefGoogle Scholar
Zhang, L. J., Fan, R. Y., and Gong, Y. M.. 2015. Zoophycos macroevolution since 541 Ma. Scientific Reports 5:14954.CrossRefGoogle ScholarPubMed
Zhang, L. J., Qi, Y. A., Buatois, L. A., Mángano, M. G., Meng, Y., Li, D., and Tang, R. F.. 2017. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings. Scientific Reports 7:45773.CrossRefGoogle ScholarPubMed
Zhu, M., Zhuravlev, A., Wood, R., Zhao, F., and Sokhov, S.. 2017. A deep root for the Cambrian Explosion: implications of new bioand chemostratigraphy from the Siberian PlatformZ. Geology 45:459462.CrossRefGoogle Scholar
Zhuravlev, A., and Riding, R.. 2000. The ecology of the Cambrian radiation. Columbia University Press, New York.CrossRefGoogle Scholar
Zhuravlev, A. Y., and Wood, R. A.. 2018. The two phases of the Cambrian Explosion. Scientific Reports 8:16656.CrossRefGoogle ScholarPubMed