We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
Hostname: page-component-669899f699-b58lm
Total loading time: 0
Render date: 2025-04-26T03:03:41.792Z
Has data issue: false
hasContentIssue false
We prove that the only Bott manifolds such that the Futaki invariant vanishes for any Kähler class are isomorphic to the products of the projective lines.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
[1]
Apostolov, V., Calderbank, D. M. J., Gauduchon, P. and Tønnesen-Friedman, C. W., Hamiltonian
$2$
-forms in Kähler geometry. III. Extremal metrics and stability, Invent. Math.173 (2008), 547–601.CrossRefGoogle Scholar
[2]
Aubin, T., Equations du type Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris.283 (1976), 119–121.Google Scholar
[3]
Batyrev, V. V., On the classification of toric Fano 4-folds, J. Math. Sci.94 (1999), 1021–1050.CrossRefGoogle Scholar
[4]
Berman, R. and Berndtsson, B., Convexity of the
$K$
-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc.30 (2017), 1165–1196.CrossRefGoogle Scholar
[5]
Bott, R. and Samelson, H., Applications of the theory of Morse to symmetric spaces, J. Amer. Math. Soc.80 (1958), 964–1029.CrossRefGoogle Scholar
[6]
Boyer, C. P., Calderbank, D. M. J. and Tønnesen-Friedman, C. W., The Kähler geometry of Bott manifolds, Adv. Math.350 (2019), 1–62.CrossRefGoogle Scholar
[7]
Buchstaber, V. M. and Panov, T. E., Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015.CrossRefGoogle Scholar
[8]
Calabi, E., “Extremal Kähler metrics” in Seminar on differential geometry, Annals of Mathematics Studies, 102, edited by Yau, S. T., Princeton University Press, Princeton, NJ, 1982, 259–290.Google Scholar
[9]
Calabi, E., “Extremal Kähler metrics II” in Differential geometry and complex analysis, (Chavel, I. and Farkas, H. M. eds.), Springer-Verlag, Berlin, 1985, 95–114.CrossRefGoogle Scholar
[10]
Chen, X. and Cheng, J., On the constant scalar curvature Kähler metrics (II)—Existence results, J. Amer. Math. Soc.34 (2021), 937–1009.CrossRefGoogle Scholar
[11]
Chen, X. and Tian, G., Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci.107 (2008), 1–107.CrossRefGoogle Scholar
[12]
Choi, S., Masuda, M. and Suh, D. Y., Quasitoric manifolds over an product of simplices, Osaka J. Math.47 (2010), 109–129.Google Scholar
[13]
Choi, S. and Suh, D. Y., Properties of Bott manifolds and cohomological rigidity, Algebr. Geom. Topol.11 (2011), 1053–1076.CrossRefGoogle Scholar
[14]
Cox, D. A., Little, J. B. and Schenck, H. K., Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011.CrossRefGoogle Scholar
[15]
Dervan, R. and Legendre, E., Valuative stability of polarised varieties, Math. Ann.385 (2023), 357–391.CrossRefGoogle Scholar
[16]
Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differ. Geom.62 (2002), 289–349.CrossRefGoogle Scholar
[17]
Fujita, K., Towards a criterion for slope stability of Fano manifolds along divisors, Osaka J. Math.52 (2015), 71–93.Google Scholar
[18]
Fujita, K. and Yotsutani, N., Strong Calabi dream Bott manifolds, Ann Univ. Ferrara.70 (2024), 607–630.CrossRefGoogle Scholar
[19]
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993.CrossRefGoogle Scholar
[20]
Futaki, A., An obstruction to the existence of Einstein Kähler metrics, Invent. Math.73 (1983), 437–443.CrossRefGoogle Scholar
[21]
Futaki, A., On compact Kähler manifold of constant scalar curvature, Proc. Japan Acad. Ser. A59 (1983), 401–402.CrossRefGoogle Scholar
[22]
Guan, D., Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends, Trans. Amer. Math. Soc.347 (1995), 2255–2262.Google Scholar
[23]
Grossberg, M. and Karshon, Y., Bott towers, complete integrability, and the extended character of representations, Duke Math. J.76 (1994), 23–58.CrossRefGoogle Scholar
[24]
Gruber, P. M., Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 336, Springer, Berlin, 2007.Google Scholar
[25]
Hwang, A. D., On existence of Kähler metrics with constant scalar curvature, Osaka J. Math.31 (1994), 561–595.Google Scholar
[26]
Levine, M., A remark on extremal Kähler metrics, J. Differ. Geom.21 (1985), 73–77.CrossRefGoogle Scholar
Masuda, M. and Panov, T. E., Semi-free circle actions, Bott towers, and quasitoric manifolds, Math. Sb.199 (2008), 95–122.CrossRefGoogle Scholar
[29]
Nitta, Y., Saito, S. and Yotsutani, N., Relative Ding and
$K$
-stability of toric Fano manifolds in low dimensions, Eur. J. Math.9 (2023), 29.CrossRefGoogle Scholar
[30]
Ono, H., Sano, Y. and Yotsutani, N., An example of an asymptotically Chow unstable manifold with constant scalar curvature, Ann. Inst. Fourier (Grenoble).62 (2012), 1265–1287.CrossRefGoogle Scholar
[31]
Ross, J. and Thomas, R., A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom.16 (2007), 201–255.CrossRefGoogle Scholar
Song, J. and Weinkove, B., The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type, Univ. Iagel. Acta Math.50 (2013), 89–106.Google Scholar
[34]
Wang, X.-J. and Zhou, B., On the existence and nonexistence of extremal metrics on toric Kähler surfaces, Adv. Math.226 (2011), 4429–4455.CrossRefGoogle Scholar
[35]
Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I, Commun. Pure Appl. Math.31 (1978), 339–411.CrossRefGoogle Scholar
[36]
Yotsutani, N. and Zhou, B., Relative algebro-geometric stabilities of toric manifolds, Tohoku Math. J.71 (2019), 495–524.CrossRefGoogle Scholar
[37]
Yotsutani, N. and Zhou, B., Corrigenda: Relative algebro-geometric stabilities of toric manifolds (Tohoku Math J. 71, (2019), 495–524), Tohoku Math. J.75 (2023), 299–303.CrossRefGoogle Scholar