Hostname: page-component-55f67697df-sqlfs Total loading time: 0 Render date: 2025-05-09T22:20:59.035Z Has data issue: false hasContentIssue false

Produiion of a-Si1-x Cx:H powders using radiofrequency glow discharges of silane and methane mixtures.

Published online by Cambridge University Press:  10 February 2011

J. Costa
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
G. Viera
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
R. Q. Zhang
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
J. L. Andújar
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
E. Pascual
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
E. Bertran
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona. Av. Diagonal, 647. E08028 Barcelona (Catalonia). Spain.
Get access

Abstract

a-Si1-x Cx:H powders have been produced in radiofrequency glow discharges of SiH4 and CH4. Samples produced in discharges with different gas flow ratios (R=[CH4] / [SiH4]+[CH4], R ∼ 0.2 to 0.95) were analyzed by several techniques: Infrared spectroscopy, transmission electron microscopy and thermal desorption spectrometry of hydrogen. The microstructural properties of the a-Si1-x Cx:H powders obtained ranged between those previously reported in silicon particles and those of amorphous carbon particles. As a general rule, the particles, whose diameter ranged between 5 and 400 nm in diameter, showed an amorphous microstructure and high hydrogen content. Infrared spectroscopy showed that the hydrogen was mainly located on the particle surface and in microvoids forming CHi and/or SiHi (i=2,3) groups.

The hydrogen was removed from the powder by thermal annealing (< 700°C) under vacuum. Anlysis of the a-Si1-x Cx:H powders after this thermal treatment revealed new microstructural and optical features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Andrievski, R.A., J Mat. Sci., 29 (1994) 614.Google Scholar
2. Greil, P., Petzow, G., Tanaka, H., Ceram. Intern., 13 (1987) 19.Google Scholar
3. Chen, I.W., Xue, L.A., J Am. Ceram. Soc., 73 (1990) 421.Google Scholar
4. Cauchetier, M., Croix, O., Luce, M., Adv. Ceram. Mat., 3 (1988) 548.Google Scholar
5. Suzuki, M., Maniette, Y., Nakata, Y., Okutani, T., J Am. Ceram. Soc., 76 (1993) 1195 Google Scholar
6. Zhu, C.W., Zhao, G.Y., Revankar, V., Hlavacek, V., J Mat. Sci., 28 (1993) 659.Google Scholar
7. Kameyama, T., Sakanaka, K., Arakawa, H., Motoe, A., Tsunoda, T., Fukuda, K., J. Mat. Sci., 28 (1993) 4630.Google Scholar
8. Spears, K., Robinson, T.M., Roth, R., IEEE Trans. Plasma Sci., 14 (1986) 179.Google Scholar
9. Selwyn, G.S., Heidenreich, J.E., Haller, K.L., Appl. Phys. Lett., 57 (1990) 1876.Google Scholar
10. Proceedings of the 39th National Symposium of the American Vacuum Society, Part II, J Vac. Sci. Technol. A, 11 (1994) 1191141.Google Scholar
11. Proceedings of the NATO Advanced Research Workshop: “Formation, Transport, and Consequences of Particles in Plasmas”, Plasma Sources Sci. Technol., 3 (1994) 239451.Google Scholar
12. Bertran, E., Costa, J., Sardin, G., Campmany, J., Andújar, J.L. and Canillas, A., Plasma Source Sci.Technol., 3 (1994) 348.Google Scholar
13. Costa, J., Sardin, G., Campmany, J., Andújar, J.L., Canillas, A. and Bertran, E., Mat. Res. Soc Symp. Proc., 297 (1993) 10311036.; J.Costa, G.Sardin, J.Campmany, J.L.Andfijar, A.Canillas and E.Bertran, Mat. Res. Soc. Symp. Proc., 286 (1993) 155–160.Google Scholar
14. Costa, J., Roura, P., Sardin, G., Morante, J.R. and Bertran, E. Appl. Phys. Lett., 64 (1994) 463465; PRoura, J.Costa, G.Sardin, J.R.Morante and E.Bertran, Phys Rev. B, 50 (1994) 18124–18133; J.Costa, P.Roura, A.Canillas, E.Pascual, J.R.Morante, E.Bertran, Thin Solid Films, in press.Google Scholar
15. Costa, J., Sardin, G., Campmany, J. and Bertran, E., Vacuum, 45 (1994) 11151117.Google Scholar
16. Beyer, W., Wagner, H., Finger, F., J Non-Cryst. Solids, 77&78 (1985) 857 Google Scholar
17. Beyer, W., Physica B, 170 (1991) 105 Google Scholar
18. Maass, F., Bertomeu, J., Asensi, J.M., Puigdollers, J., Andreu, J., Delgado, J.C., Esteve, J., Appl. Surf Sci., 70/71 (1993) 768.Google Scholar
19. Wieder, H., Cardona, M., Guarnieri, R.C., Phys. Stat. Sol. 92 (1979) 99.Google Scholar
20. Catherine, Y., Turban, G., Thin Solid Films, 70 (1980) 101.Google Scholar