Published online by Cambridge University Press: 01 February 2011
Atomic level processes often play an important role in the way a material responds to an external field. Thus in order to model the behavior of materials accurately, it is necessary to develop simulation techniques which can effectively couple atomistic effects to the macroscopic properties of the model system and vice-versa. In other words, a multiscale methodology needs to be developed to bridge the different length and time scales. In this work we study the propagation of an elastic wave through a coupled continuum-atomistic medium. The equations of motion for the wave propagation through the continuum are solved using the Finite Difference Time Domain Method (FDTD). Simultaneously we use Molecular Dynamics (MD) to examine the effect of the wave packet on the atomic dynamics and the effect of atomic dynamics on the propagation of the wave. The handshaking between the FDTD region and the MD region is concurrent.