No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
Fully dynamical computer simulations have been used to study the physical mechanisms of ionized cluster beam deposition. Clusters containing 92 atoms were directed at <001> surfaces with energies per cluster atom ranging from one sixth to three times the cohesive energy of the target. Simulation events employed either Lennard-Jones or Embedded Atom Method potentials. The atoms in the cluster appear to undergo local melting on impact with the substrate. Higher cluster energy increases the spreading of cluster atoms on the substrate and improves epitaxy, but it also increases interdiffusion and produces point defects.