No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The use of a low ion energy of an extremely dense plasma has been studied as a dry etching as well as a thin film deposition tool (same source, two different reactors) for InP and GaAs device processing. Under these working conditions it is expected to control well the etch depth or in the case of deposition to obtain high deposition rates. In all cases minimun ion damages are induced on the processed substrate. Both technologies are presented here from the point of view of material analysis as well as device processing demonstration. For etching, the gate recess of an InP-based HEMT has been addressed as one of the key technological step that requires such properties for good device performances. InGaAs/InAlAs HEMT like structures have been grown and the recess of the InGaAs layer has been conducted with a 13eV SiCl4 inductively coupled plasma (ICP). DLTS and AFM measurements made on the exposed AlinAs surface after InGaAs removal indicate that device quality on its electrical and structural properties are achieved. Passivation of fully processed HEMT devices with a ICP enhanced chemical vapor deposition (ICPECVD) silicon nitride film is being studied.