Hostname: page-component-55f67697df-4ks9w Total loading time: 0 Render date: 2025-05-09T07:22:34.004Z Has data issue: false hasContentIssue false

Enhancing the Sound Pressure of Thermally Induced Ultrasonic Emitter Based on Nanocrystalline Porous Silicon

Published online by Cambridge University Press:  01 February 2011

Kenji Tsubaki
Affiliation:
Corporate R&D Planning Office, Matsushita Electric Works, Ltd., Osaka, 571–8686, Japan Graduate School of Eng., Tokyo Univ. of A&T, Koganei, Tokyo 184–8588, Japan
Takuya Komoda
Affiliation:
Corporate R&D Planning Office, Matsushita Electric Works, Ltd., Osaka, 571–8686, Japan Graduate School of Eng., Tokyo Univ. of A&T, Koganei, Tokyo 184–8588, Japan
Nobuyoshi Koshida
Affiliation:
Corporate R&D Planning Office, Matsushita Electric Works, Ltd., Osaka, 571–8686, Japan Graduate School of Eng., Tokyo Univ. of A&T, Koganei, Tokyo 184–8588, Japan
Get access

Abstract

It is shown that the acoustic pulse output of nanocrystalline porous silicon (nc-PS) ultrasonic emitter can be enhanced by appropriate control of both the driving mode and the nc-PS structure. The device is composed of a patterned heater electrode, an nc-PS layer, and a single-crystalline silicon (c-Si) substrate. As the sound pressure is proportional to input power in principle, the nc-PS device can generate a high acoustic power under the mode of temporal burst electrical input. The most important limiting factor for maximum electrical input power is a mechanical stress at the electrode/nc-PS interface induced by a rapid interfacial temperature raise rather than a simple electro-migration inside the thin metal film. In fact the maximum sound pressure is enhanced with increasing the hardness and Young's modulus of the nc-PS layer. The present result provides useful information for further progress of the nc-PS acoustic device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Koshida, N. and Matsumoto, N., Materials Science and Engineering R 40, 169 (2003).Google Scholar
2. Canham, L., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
4. Takahashi, M., Toriumi, Y., Matsumoto, T., Masumoto, Y. and Koshida, N., Appl. Phys. Lett. 76, 1990 (2000).Google Scholar
5. Ueno, K. and Koshida, N., Appl. Phys. Lett. 74, 93 (1999).Google Scholar
6. Koshida, N., Sheng, X. and Komada, T., Appl. Surf. Sci. 146, 371 (1999).Google Scholar
7. Canham, L., Adv. Matter. 7, 111 (1995).Google Scholar
8. Drost, A., Steiner, P., Moser, H. and Lang, W., Sens. Mater. 7, 111 (1995).Google Scholar
9. Shinoda, H., Nakajima, T., Yoshiyama, M. and Koshida, N., Nature 400, 853 (1999).Google Scholar
10. Koshida, N., Nakajima, T., Yoshiyama, M., Ueno, K., Nakagawa, T. and Shinoda, H., Mater. Res. Soc. Symp. Proc. 536, 105 (1999).Google Scholar
11. Migita, T., Shinoda, H. and Koshida, N., Jpn. J. Appl. Phys. 41, 2588 (2002).Google Scholar
12. Asamura, N., Saman Keerthi, U. K., Migita, T., Koshida, N., and Shinoda, H., Proc. 19th Sensor Symposium (IEEJ, Tokyo, 2002) pp.477482.Google Scholar
13. Hirota, J., Shinoda, H., and Koshida, N., Jpn. J. Appl. Phys. 43, 2080 (2004).Google Scholar
14. Kihara, T., Harada, T., Hirota, J. and Koshida, N., Jpn. J. Appl. Phys. 43, 2973 (2004).Google Scholar