Published online by Cambridge University Press: 11 February 2011
We present a novel microfabrication process for realizing a new type of flexible sensory “smart skin”. In this work, we focus on demonstration of a skin containing a two dimensional array of tactile sensors using polyimide and metal strain gauges. A novel polymer microfabrication approach coupled with surface release methods is demonstrated. The process yields flexible sensory skins in a low cost, efficient manner. Experimental characterization of the devices is also presented. The demonstrated sensors use metal-film strain gauges in a multiplexed two-dimensional array of tactile pixels (taxels) embedded in a polyimide thin film membrane to detect force distribution on the flexible skin. The arrays have been used to image force distributions and could be used with slip-detection friction measurement for robotic gripping application.