Published online by Cambridge University Press: 15 February 2011
The diffusion barrier properties of 100-nm-thick TiN films, both as-deposited and "stuffed", were investigated in both Al/TiN/Si and Cu/TiN/Si metallization systems. In Al/TiN/Si systems, the TiN barrier fails by the formation of both Al spikes and Si pits in the Si substrate. However, in Cu/TiN/Si systems, the failure of TiN diffusion barriers occurs by the predominant diffusion of Cu into the Si substrate, which forms dislocations along the projection of Si {111} plane and precipitates (presumably Cu-silicides) around the dislocation. In Al/TiN/Si systems, it is shown that the diffusion barrier property of TiN is significantly enhanced by "stuffing" in N2 ambient prior to Al deposition. However, in Cu/TiN/Si systems, it is found that the "stuffing" of TiN does not improve the diffusion barrier property as it does in Al/TiN/Si systems.