Published online by Cambridge University Press: 21 March 2011
A quantitative model of the electrical activity of metallic precipitates in Si is presented. An emphasis is placed on the properties of the Schottky junction at the precipitate-Si interface, as well as the carrier diffusion and drift in the Si space charge region. Carrier recombination rate is found to be primarily determined by the thermionic emission charge transport process across the Schottky junction rather than the surface recombination process. It is shown that the precipitates can have a very large minority carrier capture cross-section.